
Introduction

DII COE I&RTS: Rev 3.0 July 1997 1

FOREWORD

This document will be reviewed and updated by the Defense Information Systems Agency (DISA) as
required to remain current with technology and program requirements. This document supersedes all
previous GCCS and DII Integration documents.

Changes to this document must be approved by DISA, but comments and recommendations for change
may be forwarded for review and incorporation to:

DISA DII COE Chief Engineer
Attention: Mr. Dan Test
Department of Defense
Defense Information Systems Agency
45335 Vintage Park Plaza
Sterling, VA 20166-6701

Office Tel: (703) 735-8736
email: testd@ncr.disa.mil

The following are registered trademarks of the Microsoft Corporation: Windows, Win32, Win32s,
Windows NT, Windows 95, and MS-DOS. TrueType is a registered trademark of Apple Computer, Inc.
SoundBlaster is a trademark of Creative Labs, Inc. OS/2 and PS/2 are registered trademarks of International
Business Machines Corporation. Unicode is a trademark of Unicode, Inc. PostScript is a trademark of
Adobe Systems, Inc. UNIX is a trademark of X/Open Company Ltd.

Introduction

DII COE I&RTS: Rev 3.0 July 1997 2

Executive Summary

This document describes the technical requirements for using the Defense Information Infrastructure (DII)
Common Operating Environment (COE) to build and integrate systems. It provides implementation details
that describe, from a software development perspective, the following:

• the COE approach to software reuse,
• the COE runtime execution environment,
• the definition and requirements for achieving DII compliance,
• the process for automated software integration into the COE or into a COE-based system, and
• the process for electronically submitting/retrieving software components to/from the DII repository.

DII compliance is closely associated with interoperability, and for this reason systems are increasingly
being measured by the degree to which they meet requirements described in this document. OSD has issued
a directive that all new C4I systems and other systems which interface to C4I systems shall be in
compliance with the Joint Technical Architecture (JTA). The JTA in turn mandates use of the DII COE.
The JTA is being expanded in scope to address weapons systems as well.

Background

The DII COE concept is best described as an architecture that is fully compliant with the DOD Technical
Architecture for Information Management (TAFIM), Volume 3, an approach for building interoperable
systems, a reference implementation containing a collection of reusable software components, a
software infrastructure for supporting mission-area applications, and a set of guidelines, standards, and
specifications. The guidelines, standards, and specifications describe how to reuse existing software and
how to properly build new software so that integration is seamless and, to a large extent, automated. The
JTA replaces the standards guidance in the TAFIM as per OSD directive dated 22 Aug 96. In the absence of
a Joint Systems Architecture, the JTA currently mandates the use of the DII COE (a fundamental JSA
component) in Section 2.2. The DII COE will be evolved as necessary to maintain compliance with
mandated standards found in future JTA updates.

The COE is primarily concerned with the executable environment of a system and is specifically designed
to be programming-language neutral. It does not state a preference of one language over another, but leaves
the selection of a programming language to higher-level standards profile guidance and programmatic
considerations. Any statements in the I&RTS which appear to state or imply a preference for one language
over another are unintentional.

The COE is a “plug and play” open architecture. The current reference implementation is designed around
a client/server model. The COE is not a system; it is a foundation for building an open system.
Functionality is easily added to or removed from the target system in small manageable units, called
segments. Structuring the software into segments is a powerful concept that allows considerable flexibility
in configuring the system to meet specific mission needs or to minimize hardware requirements for an
operational site. Site personnel perform field updates by replacing affected segments through use of a
simple, consistent, graphically oriented user interface.

The DII COE was initially based on work from the C4I arena, but it has been expanded to encompass a
range of other functional areas including logistics, transportation, base support, personnel, health affairs,
and finance. Three representative systems that use the DII COE are the Global Command and Control
System (GCCS), the Global Combat Support System (GCSS), and the Electronic Commerce Processing
Node (ECPN) system. All three systems use the same infrastructure and integration approach, and the same

Introduction

DII COE I&RTS: Rev 3.0 July 1997 3

COE components for functions that are common between the systems. GCCS is a C4I system with two
main objectives: the replacement of the World-Wide Military Command and Control System (WWMCCS)
and the implementation of the C4I For the Warrior concept. GCCS is already fielded at a number of
operational CINCs and in calendar year 1996, achieved the first objective of replacing all WWMCCS
systems. GCSS is under development and is targeted for the warfighting support functions (logistics,
transportation, etc.) to provide a system that is fully interoperable with the warfighter C4I system.
Implemented to its fullest potential, GCSS will provide both warfighter support to include reachback from
deployed commanders into the CONUS sustaining base infrastructure, and cross-functional integration on a
single platform. ECPN is also under development and is to provide the foundation for paperless exchange
of business information, including funds transfer, using electronic media. A number of other programs that
are in the early stages of development have committed to using the DII COE, and several programs have
committed to migrating their existing systems to the DII COE.

The DII COE represents a departure from traditional development programs. It emphasizes incremental
development and fielding to reduce the time required to put new functionality into the hands of the warrior,
while not sacrificing quality nor incurring unreasonable program risk or cost. This development approach is
sometimes described as a “build a little - test a little - field a lot” philosophy. It is a process of continually
evolving a stable baseline to take advantage of new technologies as they mature and to introduce new
capabilities. But the changes are done one step at a time so that the warfighters always have a stable
baseline product while changes between successive releases are perceived as slight. This approach allows
program managers the option of taking advantage of recently developed functions to rapidly introduce new
capabilities to the field, or to synchronize with COE development at various checkpoints for those
environments where incremental upgrades are not readily acceptable to the customer community.

DISA maintains the COE software and software from its own COE-based systems (e.g., GCCS, GCSS,
ECPN) in an online configuration management repository called SDMS (Software Distribution
Management System). This approach decreases the development cycle by allowing developers to receive
software updates, or to submit new software segments, electronically. With appropriate security measures,
installation costs are also reduced because operational platforms may be updated electronically across
SIPRNET or other LAN networks.

New Features

This new release represents an upgrade to the previous version of this document, the DII COE Integration
and Runtime Specification (I&RTS), version 2.0. It is intended to amplify and clarify sections that were
previously unclear or incomplete, and to present a set of new capabilities. This new version is completely
backwards compatible with the previous release of this document. There is no resultant reduction in the
compliance of systems that have already been migrated under the previous version of this document,
although Appendix B has been reworked to make compliance checking easier.

It should also be noted that the I&RTS document contents and version number are entirely independent of
the DII COE software release contents and version number. There is no direct correspondence between a
particular version number of the I&RTS and the capabilities available in a version of the DII COE with the
same version number. The I&RTS document describes the technical requirements for using the DII COE
and therefore addresses the current and future capabilities of the DII COE. Portions of the I&RTS are
always ahead of the DII COE software, addressing future capabilities and technological advances, so that
developers can see where the DII COE is headed.

Several new capabilities are incorporated into this release including:

• Guidance for using DCE (Distributed Computing Environment)
• Extensions for World-Wide-Web (WWW) applications within the COE
• Database application support through the Shared Data Environment (SHADE)
• Inclusion of an NT-based COE for PCs
• Additional tools for managing large-scale LAN environments.

Introduction

DII COE I&RTS: Rev 3.0 July 1997 4

Conclusion

The principles described in this document are not unique to DISA programs. They can be readily applied to
many application areas. The specific software components selected for inclusion in the COE determine the
mission area that the COE can address. The concepts herein represent the culmination of open systems
evolutionary development from both industry and government. Most notably, the Army Common Software
(CS) and the Navy Joint Maritime Command Information System (JMCIS) COE efforts have greatly
influenced DII COE development.

The DII COE architecture is an innovative framework for designing and building military systems. Because
it reuses software contributed by mature programs, it utilizes field-proven software for common warrior
functions. The engineering procedures for adding new capabilities and integrating systems are mature, and
have been used for several Navy JMCIS releases as well as in all production GCCS releases. The end result
is a strategy for fielding systems with increased interoperability, reduced development time, increased
operational capability, minimized technical obsolescence, minimal training requirements, and minimized
life-cycle costs.

This page is intentionally blank.

Introduction

The Command, Control, Communication, Computer, and Intelligence (C4I) For the Warrior (C4IFTW)
vision has been stated as follows:

The Warrior needs a fused, real-time, true-picture of the battlespace and the ability to
order, respond, and coordinate vertically and horizontally to the degree necessary to
prosecute the mission in that battlespace.

This broad visionary statement demonstrates that an unprecedented degree of integration and
interoperability is required of Department of Defense (DOD) systems, both for legacy systems and for
systems that are under construction. The Defense Information Infrastructure (DII) Common Operating
Environment (COE) is the key to achieving this vision.

The DII COE1 originated with a simple observation about command and control systems: certain functions
(mapping, track management, communication interfaces, etc.) are so fundamental that they are required for
virtually every command and control system. Yet these functions are built over and over again in

1 The acronyms “DII COE” and “COE” are used interchangeably throughout this document. Other COEs
exist (such as the Joint Maritime Information System (JMCIS) COE) which are very similar in scope or
implementation with the DII COE. To avoid confusion, unless otherwise indicated, “COE” always refers to
the DISA DII COE.

Introduction

DII COE I&RTS: Rev 3.0 July 1997 5

incompatible ways even when the requirements are the same, or vary only slightly, between systems. If
these common functions could be extracted, implemented as a set of extensible low-level building blocks,
and made readily available to system designers, development schedules could be accelerated and
substantial savings could be achieved through software reuse. Moreover, interoperability would be
significantly improved because common software is used across systems for common functions, and the
functional capability only needs to be built correctly once rather than over and over again for each project.

This observation led to the development of the DII COE. Although its roots are in the C4I arena, the DII
COE and its principles are not unique to C4I. The DII COE has been expanded to encompass a range of
other functional areas including logistics, transportation, base support, personnel, health affairs, and
finance. All new Defense Information Systems Agency (DISA) systems are being built using the DII COE
while existing DISA systems are being migrated to use the DII COE. The Office of the Secretary of
Defense (OSD) has recently issued a directive2 that requires JTA compliance and, indirectly, use the DII
COE.

A significant aspect of the COE challenge is to strategically position the architecture so as to be able to take
advantage of technological advances. At the same time, the system must not sacrifice quality, stability, or
functionality already in the hands of the warrior. In keeping with current DOD trends, the COE emphasizes
use of commercial products and standards where applicable to leverage investments made by commercial
industry.

2 OSD Directive dated 22 August 1996 (Subject: Implementation of the DOD Joint Technical
Architecture). The directive states that all new C4I systems and other systems which interface to C4I
systems shall be in compliance with the JTA. The JTA in turn mandates use of the DII COE. The JTA is
being expanded in scope to address weapons systems as well.

A Brief History of the DII COE

DII COE I&RTS: Rev 3.0 July 1997 6

1.1 A Brief History of the DII COE

Initial DII COE development was driven by a near-term requirement to build a suitable WWMCCS
replacement. To achieve the near-term WWMCCS replacement objective, technical experts and program
managers from the Services, intelligence community, Defense Mapping Agency (DMA), and other
interested agencies met for several months beginning in the fall of 1993. Participants proposed candidate
systems as a possible starting point for a COE architecture or as a suitable candidate for providing
capabilities to meet WWMCCS replacement requirements. None of the candidate systems met all
requirements, but it was clear that a combination of the “best” from several systems could produce a
near-term system that would be suitable for WWMCCS replacement. Moreover, an infrastructure could be
put into place and a migration strategy defined to preserve legacy systems until migration to the intended
architecture could be realized.

The cornerstone architectural concept jointly developed during that series of meetings was the GCCS COE.
This initial COE was limited in scope to address the immediate C4I problem (i.e., WWMCCS
replacement), but its principles, structure, and foundation deliberately went far beyond just the C4I mission
domain. The GCCS COE was composed of software contributed from candidate systems evaluated by this
original Joint engineering team.

An initial proof-of-concept system, GCCS 1.0, was installed in early 1994 at one site to validate the
approach and to receive early feedback. GCCS 1.1 followed in the summer of 1994 and was the first
attempt to integrate software from Service programs as initial GCCS COE components. GCCS 1.1 included
mission applications from other programs operating in a “federated” mode. That is, the mission
applications were integrated together so as to be able to run on the same hardware without interfering with
each other, but not yet able to effectively share data between applications. GCCS 1.1 was installed and
tested at beta sites and used at certain operational sites to monitor events during the 1994 Haiti crisis.
GCCS 2.0 fielding began in early 1995 at a number of operational sites. GCCS 2.1 was fielded in mid-1995
and by mid-1996 had successfully replaced WWMCCS. A prototype version of GCCS 2.2 was the basis for
Joint Warrior Interoperability Demonstration (JWID) 95 and a refinement of it was the basis for JWID 96.
Another GCCS 2.2 enhancement was placed in theater to support Bosnia operations and for contingency
planning when tensions in the Gulf area increased in mid-1996.

In mid-1995 technical experts met under DISA guidance to expand the GCCS COE into the DII COE. The
result is a COE that contains all of the original GCCS COE functionality and that is backwards compatible.
The DII COE was expanded to address other mission domains. Much of the original software has been
updated to take advantage of further technological advances and Commercial Off-the-Shelf (COTS)
software has replaced some of the original Government Off-the-Shelf (GOTS) components. From this
historical perspective, the GCCS COE can be viewed as a subset of the much larger DII COE. Although
GCCS succeeded in replacing the aged WWMCCS, it is important to realize that GCCS is far more than
just a WWMCCS replacement.

The DII COE has its roots in command and control, but the principles and implementation described in this
document are not unique to, nor limited to, command and control or logistics applications but are readily
applicable to many other application areas. The specific software components selected for inclusion in the
COE determine the mission areas that the COE can address.

Backwards compatibility is a fundamental tenet of the COE and significant effort is expended to preserve
legacy investments. Systems which migrate to the DII COE now are protected by backwards compatibility
as future COE versions are released. Upgrading from one COE version to the next is generally no more
difficult than upgrading from one COTS product version to the next.

The DII COE Concept

DII COE I&RTS: Rev 3.0 July 1997 7

1.2 The DII COE Concept

The DII COE concept is a new approach that is much broader in scope than software reuse. Most software
reuse approaches to date have proven less than satisfactory. Reuse approaches have generally emphasized
the development of a large software repository from which designers may pick and choose modules or elect
to rebuild modules from scratch. It is not sufficient to have a large repository, and too much freedom of
choice leads to interoperability problems and duplication of effort. This rapidly negates the advantages of
software reuse.

Software reuse strategies have also ignored the importance of data reuse. The approach has traditionally
been to encapsulate data into a relational database from which applications may retrieve the data according
to their own view (i.e., schema). While this approach was a tremendous advance, it fell short of the goal of
providing truly interoperable systems in the Joint arena. What is required is an approach that promotes data
sharing within systems and between systems. The approach must also recognize and resolve the issues of
duplicative data, inconsistencies in the data, and data replication. SHADE is the data reuse strategy for the
DII COE.

The DII COE emphasizes both software reuse and data reuse and interoperability for both data and
software. But its principles are more far reaching and innovative. The COE concept encompasses:

• an architecture and approach for building interoperable systems,
• an environment for sharing data between applications and systems,
• an infrastructure for supporting mission-area applications,
• a rigorous definition of the runtime execution environment,
• a reference implementation on which systems can be built,
• a collection of reusable software components and data,
• a rigorous set of requirements for achieving DII3 compliance,
• an automated toolset for enforcing COE principles and measuring DII compliance,
• an automated process for software integration,
• an approach and methodology for software and data reuse,
• a set of Application Program Interfaces (APIs) for accessing COE components, and
• an electronic process for submitting/retrieving software and data to/from the DII repository.

This document is an engineering specification that describes how modules must interact in the target
system. System architects and software developers retain freedom in building the system, but runtime
environmental conflicts and data conflicts are identified and resolved through automated tools that enforce
COE principles. An important side effect is that traditional integration tasks largely become the
responsibility of the developer. Developers are required to integrate and test their software with the COE
prior to delivering it to the government. This simplifies integration because those who best understand the
software design (the original developers) perform it, it reduces the cost because integration is performed
earlier and at a lower level in the process, and it allows the government to concentrate on validation instead
of integration.

The COE must be understood as a multi-faceted concept. Understanding how the many facets interact is
important to appreciate the scope and power of the DII COE and to avoid confusion in understanding COE
material. The next subsection deals with four specific facets in more detail:

• the COE as a system foundation,
• the COE as an architecture,

3 The term “DII compliance” is preferred instead of “COE compliance” and is used throughout the I&RTS.
The compliance concept and approach has not changed, but compliance is measured for segments within
the COE as well as mission-application segments that lie outside the COE. Therefore, “DII compliance” is
more descriptive and correct than “COE compliance.”

The DII COE Concept

DII COE I&RTS: Rev 3.0 July 1997 8

• the COE as a reference implementation, and
• the COE as an implementation strategy.

Failure to understand these facets will lead to confusion and non-compliant systems.

1.2.1 The DII COE as a System Foundation

The DII COE is not a system; it is a foundation for building systems. Figure 0-1 is a simplified diagram that
shows how the DII COE serves as a foundation for building multiple systems. Details such as specific COE
components, databases, and the internal structure of the COE have been omitted for clarity. Chapter 2
provides this level of information and describes the COE in much more detail. The purpose of Figure 0-1 is
to introduce the concept.

The shaded box in Figure 0-1 shows two types of reusable software: the operating system and COE
components. For the present discussion, it is sufficient to note that COE components are accessed through
APIs and that the COE components form the architectural backbone of the target system. The API is the
means through which a system permits a programmer to develop applications through interaction with the
underlying COE. Standards (POSIX [Portable Operating System for Information Exchange] in the diagram)
and specifications (TAFIM [Technical Architecture Framework for Information Management], JTA [Joint
Technical Architecture], I&RTS [Integration and Runtime Specification], and User Interface Specification
[UIS] in the diagram) dictate how COE components are to be built and how external components must be
built to be compliant with the COE architecture.

Building a target system includes combining COE components with mission-specific software. The COE
infrastructure manages the flow of data through the system, both internally and externally. Mission-specific
software is mostly concerned with requesting data from the COE and then presenting it in a form that is
most meaningful to the operator (e.g., as a pie chart, in tabular form, as a graph). The COE provides the
necessary primitives for such data whether stored locally or remotely across a Local Area Network (LAN)
or Wide Area Network (WAN). This frees the system designer to concentrate on meaningful data
presentation and not on the mechanics of data manipulation, network communications, database storage,
etc.

There is only one COE regardless of the target system. The COE is a set of building blocks. System
designers select those building blocks (e.g., COE components) required for their mission application, while
excluding building blocks that are not required. Each derived system uses the same set of APIs to access
common COE components, the same approach to integration, and the same set of tools for enforcing COE
principles. For common functions (e.g., communications interfaces, dataflow management), each target
system uses precisely the same COE software components. Compliant systems do not implement their own
versions of algorithms within the COE because this will rapidly lead to interoperability problems as
algorithms are interpreted differently or because systems fail to upgrade algorithms at the same time. This
approach to software reuse significantly reduces interoperability problems because if the same software is
used, it is not possible to have two systems that interpret or implement standards differently.

The DII COE Concept

DII COE I&RTS: Rev 3.0 July 1997 9

GCCS GCSS ECPN Other

COE Based Systems
R

eu
sa

bl
e

So
ft

w
ar

e

H/W Platform

Standard Application Program Interfaces

COE Components

Operating System Services

DII COE

Standards

•I&RTS
•UIS
•POSIX
•TAFIM
•JTA

Figure 0-1: DII COE and COE-Based Systems

1.2.2 The DII COE as an Architecture

The DII COE is a “plug and play” open architecture designed around a client/server model. Functionality is
easily added to or removed from the target system in small manageable units called segments. Segments are
defined in terms of functions that are meaningful to operators, not in terms of internal software structure.
Structuring the system into segments in this manner allows flexibility in configuring the system to meet
specific mission needs or to minimize hardware requirements for an operational site. Site personnel
perform field updates by replacing affected segments through use of a simple, consistent, graphically-
oriented user interface.

The DII COE model is analogous to the Microsoft Windows® paradigm. The idea is to provide a standard
environment, a set of standard off-the-shelf components, and a set of programming standards that describe
how to add new functionality to the environment. The Windows paradigm is one of “federation of systems”
in that properly designed applications can coexist and operate in the same environment. But simple
coexistence is not enough. It must be possible for applications to share data. The DII COE extends the
Windows paradigm to allow for true “integration of systems” in that mission applications share data at the
server level.

The DII COE Concept

DII COE I&RTS: Rev 3.0 July 1997 10

Federation versus integration is an important architectural distinction. However, integration is not possible
without strict standards that describe how to properly build components to add to the system. This applies
equally to software functions and data. This document and other related documents detail the technical
requirements for a well-behaved, DII-compliant application. The COE provides automated tools to measure
compliance and to pinpoint problem areas. A useful side effect of the tools and procedures is that software
integration is largely an automated process, thus significantly reducing development time while
automatically detecting potential integration and runtime problem areas.

More precisely, to a developer the DII COE includes each of the following:

• An Architecture4: A precisely defined TAFIM and JTA-compliant, client/server architecture for how
system components will interact and fit together and a definition of the system-level interface to COE
components.

• A Runtime Environment: A standard runtime operating environment that includes “look and feel,”

operating system, and windowing environment standards. Since no single runtime environment is
possible in practice, the COE architecture provides facilities for a developer to extend the environment
in such a way as to not conflict with other developers.

• A Data Environment: A standard data environment that prescribes the rules whereby applications can
share data with other applications.

• A Reference Implementation: A clearly defined set of already implemented, reusable functions. A set

of reusable software and data is a cornerstone of the DII COE product.

• A Set of APIs: A collection of interfaces for accessing COE components. Thus, the COE is a set of

building blocks in the same sense that X Windows and Motif are building blocks for creating an
application's Graphical User Interface (GUI).

• A Set of Standards and Specifications: A set of rules that describe how to use the COE, how to

construct segments, how to create a GUI, etc.

• A Development Methodology: A process for developing, integrating, and distributing the system and

a process for sharing components with other developers. The COE emphasizes and encourages
incremental development that has the advantage of quickly producing usable functionality.

1.2.3 The DII COE as a Reference Implementation

The COE necessarily includes an implementation of the components defined to be in the COE. The
reference implementation is the key to reusability and interoperability. Use of the reference implementation
provided is required to assure interoperability and is therefore a fundamental requirement for DII
compliance. The reference implementation may change over time to take advantage of new technologies or
to fix problem reports, but incremental improvements are introduced while preserving backwards
compatibility.

The term reference implementation should be properly understood in the context of the DII COE. It means
that a single body of code has been used as a starting point for implementing the COE on a specific

4 The JTA describes three types of architectures: operational, technical, and system. The DII COE is
relevant to all three types but does not and cannot provide a complete architectural definition for all three
types. For example, the operational architecture also includes consideration of the command echelon and
reporting structure. This is dictated by policy and is thus outside the scope of the COE. The DII COE is
limited to addressing those aspects of an architecture that can be implemented in hardware and software as
dictated by higher level standards, concept of operations, and service doctrine.

The DII COE Concept

DII COE I&RTS: Rev 3.0 July 1997 11

hardware platform and operating system. The only differences in the actual executable binary code are
those that arise purely as a result of porting from one platform to another. The algorithms and the way the
algorithms are implemented are identical from platform to platform.

1.2.4 The DII COE as an Implementation Strategy

The COE is also an evolutionary acquisition and implementation strategy. This represents a departure from
traditional development programs. It emphasizes incremental development and fielding to reduce the time
required to put new functionality into the hands of the warrior, while not sacrificing quality nor incurring
unreasonable program risk or cost. This approach is sometimes described as a “build a little - test a little -
field a lot” philosophy. It is a process of continually evolving a stable baseline to take advantage of new
technologies as they mature and to introduce new capabilities. But the changes are done one step at a time
so that the warfighters always have a stable baseline product while changes between successive releases are
perceived as slight. Evolutionary development has become a practical necessity for many development
programs because the traditional development cycle time is longer than the technical obsolescence cycle
time. This approach allows program managers the option of taking advantage of recently developed
functions to rapidly introduce new capabilities to the field, or of synchronizing with COE development at
various points for those situations where incremental upgrades are not readily acceptable to the customer
community.

The COE implementation strategy is carefully structured to protect functionality contained in legacy
systems so that over time they can migrate to full COE utilization. Legacy systems must use only “public”
APIs and migrate away from use of “private” APIs. Public APIs are those interfaces to the COE that will be
supported for the life cycle of the COE. Private APIs are those interfaces that are supported for a short
period of time to allow legacy systems to migrate from unsanctioned to sanctioned APIs. All new
development is required to use only public APIs and use of any other APIs results in a non-DII compliant
segment.

From the perspective of a system developer, whether developing a new application or migrating an existing
one, the COE is an open client/server architecture that offers a collection of services and already-built
modules for mission applications. Thus, the developer's task is to assemble and customize5 existing
components from the COE while developing only those unique components that are peculiar to particular
mission’s requirements. These additional mission-unique components must still adhere to the standards
specified in the JTA and this document. In many if not most cases, this amounts to adding new “pull-down
menu entries and icons.”

5 Customization is achieved in two ways: by omitting COE components that are not required and by
configuring operational characteristics of the selected COE components. Customization does not mean the
ability to change the functional operation of the component (a) outside the configurable items provided by
the component or (b) outside the facilities provided by the component’s APIs. When customizing the COE
is discussed in this document, it must be understood in this context as a way of tailoring the COE to meet a
specific mission need.

Lessons Learned

DII COE I&RTS: Rev 3.0 July 1997 12

1.3 Lessons Learned

The COE as the embodiment of an architectural concept offers the opportunity to leverage a mature,
proven, field tested software base for a wide variety of applications for the services, agencies, and Joint
community. As budgets shrink and as budgetary priorities shift, program managers require the ability to
continue to respond rapidly with systems that satisfy the information needs of United States and Allied
Armed Forces. The COE implementation strategy is a significant advancement in fulfilling this ongoing
need.

Examination of state-of-the-art development in light of these realities results in a set of fundamental tenets
that greatly influence the history, future, and direction of the DII COE. An explanation of these tenets is
useful in understanding the COE as a whole.

• Pre-COE practices lead to development and redevelopment of the same functionality across systems.
Redevelopment is frequently necessary because of technological changes as algorithms are improved
or as hardware becomes faster and cheaper. However, development cost tends to be high due to a lack
of coordination between programs that share common requirements.

• Duplication of functionality within the same system is more expensive than avoiding duplication. Lack

of coordination between program developers is a fundamental cause for duplicative functions, but an
additional factor is that reuse libraries are not commonly available. The impact of duplication is more
than just program costs. When functionality is duplicated, system users are often given conflicting
information even in the presence of identical data because designers took slightly different approaches
to solving the same problems or made slightly different assumptions.

• Interoperability is not achievable through “paper” standards alone.6 Standards are necessary, but not

sufficient,7 to guarantee interoperability. Interoperability problems are generally not caused by the
standards chosen but by differing or incorrect interpretations of standards. System designers often
choose different standards with which to comply, but even when the standards are the same, different
interpretations of the standards can greatly change the way the resulting system operates. The COE
emphasizes use of industry and government standards, but relies even more on automated ways of
measuring and evaluating compliance, and thus quantitatively evaluating program risk. The only
practical way to achieve interoperability is to use exactly the same software, written to appropriate
standards, for common functions across applications. For example, the COE contains a common
tactical track correlator to ensure that all users see the same tactical picture. The answer produced by
the correlator may be incorrect but a problem correction in one place then becomes effective for all
users.

• Pre-COE practices lead to exponential growth in testing and associated development costs. Lack of

commonality and modularity in system building blocks means that there is much duplication of effort
in testing basic functionality and testing in one section of a system is often tightly coupled to testing in
another section. This complicates and extends the certification process. Configuration management,
system integration, and long-term maintenance are also more complex and costly when there is a lack
of commonality and modularity in system building blocks.

• The importance of training is usually underestimated and the magnitude of the training problem is

increasing. An operator is often expected to use multiple systems which behave completely differently,

6 This statement is not meant to minimize the importance of standards, but to state that they alone are not
sufficient to solve interoperability problems. The situation would be far more desperate in the absence of
standards.
7 The solution provided by the COE is to define specifications and a reference implementation of a
standard. For example, in the user interface area, Motif is the standard selected for UNIX platforms and the
DII User Interface Specification is the specification written to be compliant with Motif, but tailored for the
particular mission domain.

Lessons Learned

DII COE I&RTS: Rev 3.0 July 1997 13

are equally complex with their own subtleties, and which give slightly different answers. Operator
turnover is rapidly reaching the point where the time it takes to train an operator is a significant portion
of the time that the operator is assigned to his current tour of duty. Training is greatly reduced by a
consistent “look and feel” and by the ability to present to the operator only those functions useful for
the task at hand.

• Don’t reinvent the wheel. If a component already exists, it should probably be utilized even if the

component is not the optimum solution. Almost any module can be improved but that is rarely the
issue. Reuse of existing and proven software allows focus of attention on mission uniqueness. Rather
than concentrating scarce development resources on recreating building blocks, the resources can be
more appropriately applied to configuration and development of functionality that is not already
available.

• Utilize existing commercial standards, specifications, and products whenever feasible. The

commercial marketplace generally moves at a faster pace than the military marketplace and
advancements are generally available at a more rapid rate. Use of commercial products has several
advantages. Using already built items lowers production costs. The probability of product
enhancements is increased because the marketplace is larger. The probability of standardization is
increased because a larger customer base drives it.

Requirements and Objectives

DII COE I&RTS: Rev 3.0 July 1997 14

1.4 Requirements and Objectives

The following requirements apply to the DII COE:

• The DII COE will be fully compliant with the JTA8. Standards defined within the JTA promote an open
systems architecture, the benefits of which are assumed to be well known and generally accepted.

• The DII COE is intended to be hardware independent and operate on a range of open systems

platforms running under standards-based operating systems. Program-driven requirements, associated
testing costs, and funding will dictate which specific hardware platforms are given priority.

• Non-developmental items (NDIs), including both COTS and GOTS products, are the preferred

implementation approach.

• The DII COE is programming-language neutral. It does not state a preference of one language over
another, but leaves the selection of a programming language to higher-level standards profile guidance
and programmatic considerations. Any statements in the I&RTS which appear to state or imply a
preference for one language over another are unintentional.

COE development is driven by C4IFTW requirements as articulated by the services through the appropriate
DISA Configuration Control Board (CCB) process. Development priorities are established by the CCB
Chair and given to the DII COE Chief Engineer for implementation.

The broad program drivers for the DII COE lead to a number of program objectives that include those
stated in the TAFIM, Volume 2:

1. Commonality: Develop a common core of software that will form the foundation for Joint systems,
initially for C4I and logistics systems.

2. Reusability: Develop a common core of software that is highly reusable to leverage the investment

already made in software development across the services and agencies.

3. Standardization: Reduce program development costs through adherence to industry standards. This

includes use of commercially available software components whenever possible.

4. Engineering Base: Through standardization and an open architecture, establish a large base of trained

software/systems engineers.

5. Training: Reduce operator training costs and improve operator productivity through enforcement of a

uniform human-machine interface, commonality of training documentation, and a consistent “look and
feel.”

6. Interoperability: Increase interoperability through common software and consistent system operation.

7. Scalability: Through use of the segment concept and the COE architectural infrastructure, improve

system scalability so that COE-based systems will operate with the minimum resources required.

8. Portability: Increase portability through use of open systems concepts and standards. This also

promotes vendor independence for both hardware and software.

8 JTA replaces some of the standards guidance in the TAFIM as per OSD directive (Subject:
Implementation of the DOD Joint Technical Architecture) dated 22 August 1996. It replaces those
standards for service areas defined within the JTA. For those service areas not included in the JTA,
guidance in Volume 7 of the TAFIM is to be followed.

Requirements and Objectives

DII COE I&RTS: Rev 3.0 July 1997 15

9. Security: Improve system security to the extent possible to protect the system from deliberate attack
and prevent unauthorized access to data and applications.

10. Testing: Reduce testing costs because common software can be tested and validated once and then

applied to many applications.

Document Scope

DII COE I&RTS: Rev 3.0 July 1997 16

1.5 Document Scope

This document describes the technical requirements for building and integrating software components on
top of the DII COE. It provides implementation details that describe, from a software development
perspective, the following:

• the Common Operating Environment (COE) approach to software reuse,
• the runtime execution environment,
• the Shared Data Environment (SHADE),
• the requirements for DII compliance,
• how to structure components to automate software integration, and
• how to electronically submit/retrieve software components to/from the software repository.

Applicable Documents, Standards, and Specifications

DII COE I&RTS: Rev 3.0 July 1997 17

1.6 Applicable Documents, Standards, and Specifications

This document is one in a series of related documents that define development requirements, system
architecture, engineering tools, and implementation techniques. Many of the documents cited are available
on the World-Wide-Web (WWW), or contact the DISA Configuration Management (CM) office for
information on how to obtain the desired documents.

Because the COE and COE-based systems are ongoing programs, enhancements and additional features are
developed on a regular basis. Documentation updates are regularly released for each of the documents
listed here. Be sure to always refer to the latest version for the documents listed below, and be aware that
many of the documents are being modified and extended to address DII COE-based systems, not just
GCCS or GCSS.

1. Architectural Design Document for the Defense Information Infrastructure (DII) Common Operating
Environment (COE), January 1996, DISA Center for Computer Systems Engineering. This
document is the definitive high-level technical description of the COE. It documents the architectural
design produced by the DISA COE Design Working Group. It is useful for understanding how the
client/server model has been implemented within the DII COE.

2. C4ISR Architecture Framework, CISA-0000-104-96, Version 1.0, 7 June 1996, C4ISR Integration

Task Force (ITF) Integrated Architectures Panel. This document presents an innovative definition
of levels of interoperability. The DII COE adopts these levels of interoperability and maps DII
compliance to interoperability levels.

3. Defense Information Infrastructure (DII) Common Operating Environment (COE) Version 3.0

Baseline Specifications, 31 October 1996, DISA. This document describes the detailed contents of
each COE release and is updated with each subsequent release. It includes the name and version of
each segment in the COE as well as COTS products, their version, and applicable patches.

4. Defense Information Infrastructure (DII) Common Operating Environment (COE) System

Requirements Specification, Draft, 1996, Institute for Defense Analysis. Service and Agency
requirements for a COE are defined in this document. It is a living document that is updated as
necessary to reflect ongoing requirements collection.

5. Defense Information Infrastructure Software Quality Compliance Plan, Draft, 1 January 1996,

DISA. This document describes a plan for evaluating COE segments from a software quality
perspective. The plan includes static analysis of segment source code to measure complexity,
maintainability, risk, and other standard software metrics.

6. Department of Defense Joint Technical Architecture, Final Coordination Draft 1.0, 22 August 1996,

Joint Technical Architecture Working Group. The JTA has been mandated by OSD directive for “...
all emerging systems and systems upgrades. The JTA applies to all C4I systems and the interfaces of
other key assets (e.g., weapons systems, sensors, office automation systems, etc.) with C4I systems.
The JTA also applies to C4I Advanced Concept Technology Demonstrations and other activities that
lead directly to the fielding of operational C4I capabilities.” The JTA stipulates DII compliance as part
of its requirements. It also “... replaces the standards guidance in the Technical Architecture
Framework for Information (TAFIM) currently cited in DOD Regulation 5000.2-R.”

7. Department of Defense Technical Architecture Framework for Information Management, Volumes 1-8,

Version 3.0, 2 January 1997, DISA Center for Architecture. This multi-volume document defines a
standards profile and the DOD Technical Reference Manual (TRM) for information management
systems. This document set also presents a high-level technical architecture that is useful for
classifying levels within a system’s infrastructure. The TRM distinguishes between the hardware
platform, hardware-specific services, supporting infrastructure services, and mission applications.

Applicable Documents, Standards, and Specifications

DII COE I&RTS: Rev 3.0 July 1997 18

8. Information Technology - Portable Operating System Interface for Computer Environments (POSIX) -
Part 1: System Application Program Interface (API) [C Language], ISO 9945-1, 1990; Information
Technology - Portable Operating System Interface for Computer Environments (POSIX) - Part 2: Shell
and Utilities, ISO 9945-2, 1993. The POSIX documents are an ongoing standardization effort that is
attempting to define a common set of low-level functions, especially at the operating system level,
across all hardware platforms and operating systems.

9. User Interface Specification for the Defense Information Infrastructure (DII), Version 2.0,

1 April 1996, DISA. This document, sometimes called the DII Style Guide, defines the “look and feel”
of the user interface for COE-based systems. The User Interface Specification provides specifications
for applications using Motif and Windows GUIs; a future version of the document will include
Windows NT and Web-based applications.

The DII COE

DII COE I&RTS: Rev 3.0 July 1997 19

1.7 Document Structure

This document is structured to correspond to the typical phases in a development cycle, beginning with
how a developer builds a segment, submits it to the government, and then how it is fielded to an operational
site. Chapter 1 of this document is an overview of the DII COE, a brief history of its development, and
applicable documents and standards.

Chapter 2 gives a brief technical description of the COE, its components, and the principles that determine
whether a software component is part of the COE or is a mission application. Selection of the particular
components to populate the COE determine what applications can be supported, but the principles which
define a COE are not application-specific. Chapter 2 also describes the important concept of DII
compliance and maps compliance to levels of interoperability.

Chapter 3 is an overview of the development process. It includes a discussion of the process from segment
registration through development, submission to DISA, integration, and site installation. The tools provided
in the COE and how they are used is key to understanding automated integration.

Chapter 4 describes SHADE and other database considerations within the context of the COE. Databases
are heavily used within COE-based systems, and early consideration of their structure, how they are to be
used, and how they are to fit into the overall system is crucial in building a successful system.

Chapter 5 describes the runtime environment as it exists for operational sites, the disk directory and file
structure fundamental to the COE, and the procedures for integrating segments into a runtime environment.
Requirements detailed in Chapter 5 must be carefully followed so that applications will not interfere with
each other, and so that integration is largely an automated process.

Chapters 6, 7, and 8 are new with this version of the I&RTS. They describe extensions for the COE
reference implementation that runs on NT platforms, extensions to the COE to support Web applications,
and support for Distributed Computing Environment (DCE) applications respectively.

Chapter 9 provides some suggestions for setting up a software development environment. Few
requirements are stipulated for a development environment, allowing as much freedom for developers and
program managers as possible.

Chapter 10 describes two important components for both developers and operational sites: the online COE
Software Distribution Management System (SDMS), and the COE Information Server (CINFO). These
components are used to disseminate and manage software, documentation, meeting notices, and general
information of importance to the COE community.

Appendix A lists the currently supported COE configurations. The appendix includes supported hardware,
and supported COTS versions. It also describes the Reference Implementation program whereby vendors
may obtain low-level components of the COE and port them to their hardware platforms.

Appendix B presents a checklist for developers to use as an aid in determining the degree to which a
segment is DII-compliant. As described in the appendix, some conditions are mandatory, others require a
migration strategy to show conformance, while others are optional but recommended. This appendix has
been reworded and reformatted to be clearer and easier to apply, but is otherwise unchanged from the
previous I&RTS version.

Appendix C describes the automated tools provided with the COE. A number of new tools are provided to
simplify the segment development and maintenance life cycle. The philosophy is to provide developers
with access to the same tools that integrators will use so that segment integration is performed, as much as
possible, by segment developers prior to segment delivery. Integration of segments with the COE is the
responsibility of the segment developer. Government integrators serve as validators only in this process to
ensure that developers produce DII-compliant segments. In addition to segment validation, government

The DII COE

DII COE I&RTS: Rev 3.0 July 1997 20

integrators perform system-level integration of all segments submitted by all developers to create the target
system.

Appendix D gives additional information on the COE online repository (SDMS) and the COE information
server (CINFO).

Appendix E describes how to register a segment and what information is required for registration. Segment
registration is required in order to identify potential conflicts as early in the development cycle as possible.

The remaining appendices provide additional information on products within the COE, such as the
Relational Database Management System (RDBMS), that are either vendor-specific or product-version-
specific.

Finally, a List of Acronyms used in the I&RTS are presented and a Glossary of frequently encountered
terms. The acronyms and terms are encountered throughout DII COE-related documents.

The DII COE

DII COE I&RTS: Rev 3.0 July 1997 21

This page is intentionally blank.

2. The DII COE

The concept of a COE as embodied in the DII COE is perhaps the most significant and useful technical
byproduct of the Joint Service/Agency technical meetings that led to the successful GCCS development
effort. It represents the culmination of several years of development amongst the services/agencies and it is
interesting to note that the services/agencies independently arrived at similar conclusions. The DII COE
encompasses architecture, standards, specifications, software reuse, shareable data, interoperability, and
automated integration in a cohesive framework for systems development. Automated integration is
described more fully in Chapter 3.

This chapter is devoted to explaining the DII COE in detail. Definition of a COE is principles-driven, not
application-driven, so this chapter begins with a discussion of those principles. Selection of the actual
components to populate the COE creates a COE reference implementation9. This is important because the
components which constitute a COE instantiation determine the specific mission domain that a COE can
address (e.g., C4I for GCCS, logistics for GCSS, finance for ECPN), and how broadly defined the mission
domain can be. Because the COE is structured so that only required components are loaded, a properly
defined COE is suitable for a service-specific system (e.g., Navy JMCIS, Air Force Battlefield Situation
Display [BSD]) or a joint system (e.g., GCSS, ECPN). Also, because the architecture is principles-driven,
the DII COE is extensible to larger mission domains by expanding the selected set of software components.
The COE is an open architecture whose principles apply equally well to UNIX10 and non-UNIX platforms
such as the Personal Computer (PC). The DII COE contains a reference implementation for both UNIX and
NT platforms.

Subsection 2.1 discusses fundamental COE concepts and also describes what is meant by DII compliance
and interoperability. As with any standard, compliance is required to avoid conflicts that prevent
interoperability. Take careful note in reading subsection 2.1 that the discussion is relevant to any COE-
based system since the principles apply much more broadly than to a single system such as GCCS or
GCSS. Remaining subsections elaborate on software and hardware configurations selected for support by

9 Reference implementation means that an implementation of the COE exists and has been used as the basis
for producing the same functional equivalent on other platforms. It does not imply that developers will be
provided with source code to the COE and thus be responsible for porting it to other platforms.
10 UNIX in this document is used in the sense of a vendor-proprietary implementation of the “traditional”
UNIX operating system. Although desirable, it is not necessary that vendors have received an X/Open
UNIX 95 branding.

The DII COE

DII COE I&RTS: Rev 3.0 July 1997 22

DISA and how the software is structured at a top level to limit site operators to only those functions they
are authorized to access.

Fundamental COE Concepts

DII COE I&RTS: Rev 3.0 July 1997 23

2.1 Fundamental COE Concepts

In COE-based systems, all software and data - except certain portions of the kernel (see subsection 2.1.2.1)
such as the operating system and basic windowing software - are packaged in self-contained units called
segments. This is true for COE infrastructure software and for mission-application software as well.
Segments are the most basic building blocks from which a COE-based system can be built. Segments are
defined in terms of the functionality they provide, not in terms of “modules,” and may in fact consist of one
or more “modules.” They are defined as a collection of related functions as seen from the perspective of the
end user, not the developer. The reason for defining segments in this way is that it is a more natural way of
expressing and communicating what software features are to be included in, or excluded from, the system
than by individual process, file name, or data table. For example, it is more natural to think of a system as
containing a message processing segment than executables called MP_In and MP_Out. It is more natural
to the end user to think of a word processor segment than a software module that opens a file, another
module that paginates a file, another module that compresses a file, etc.

Those segments that are part of the COE are known as COE-component segments, or more precisely, as
segments that further have the attribute of being contained within the COE. Segments that are built on top
of the COE to provide capabilities specific to a particular mission domain are mission-application
segments. The principles which govern how segments are loaded, removed, or interact with one another are
the same for all segments, but COE-component segments are treated more strictly because they are the
foundation on which the entire system rests. A later chapter further refines the segment concept to
distinguish between data segments, software segments, patches, etc. but the point here is that segments are
a technique for packaging system components.

Each segment in the system contains a directory with a collection of data files that “self-describe” the
segment to the rest of the COE. The directory that contains these files is called the segment descriptor
directory and the files themselves are called segment descriptors. The process of decomposing a
component into individual packages and creating the required segment descriptors is called segmentation.

Packaging a system in terms of segments along with the strict rules which govern the COE and runtime
environment provide several immediate benefits:

• Segment developers are decoupled and isolated from one another. Segments are self-contained within
an assigned directory. Developers have maximum freedom within the assigned segment directory, but
minimum freedom outside it. This allows multiple developers to work in parallel with support for
seamless integration after development.

• Extensions to the environment provided by the COE are coordinated through automated software

tools. It is not possible to create a single configuration of the COE that meets all possible mission-
application or site-unique requirements. However, the COE tools make it possible to extend the
environment provided by the COE in a carefully controlled way to ensure compatibility and identify
segment dependencies and conflicts.

• Compliance verification and installation can be automated. Standards without automated validation

are difficult to use in practice, especially in a program where the system is large and there is a need to
coordinate activities from several different contractors, program sponsors, services, and agencies. The
COE approach to validation is closely related to software installation so that automation of one directly
leads to automation techniques for the other.

• Mission-application segments are isolated from the COE. System integration problems are frequently a

result of an undisciplined interaction between software components or because of tight coupling
between components. The COE controls interaction through APIs and isolates mission applications
from the COE-component segments so that failure of one mission-application segment is less likely to
affect another or affect the stability of the COE foundation itself.

Fundamental COE Concepts

DII COE I&RTS: Rev 3.0 July 1997 24

• Segments created by one developer for one system can be readily reused by another developer for
another system. That is, the DII COE is an effective strategy that includes not just software reuse, but
also ensures that a reused segment fits seamlessly into the new system.

• Integration is simplified and the original developers resolve most integration problems before the
segment is ever submitted. The segment descriptors “self-describe” the segment so that all pertinent
information required to integrate the segment into a system is contained in a standard, known location.
The tools that validate conformance to the COE detect a large percentage of traditional integration
difficulties. Moreover, the process of integration is largely automated as a byproduct of the installation
tools themselves. By its very nature, the DII COE process pushes integration responsibilities further
down to the original developer than is done with more traditional approaches.

• Configuration Management is simplified. One way that the COE process simplifies configuration
management is by using segment descriptors that allow dependencies on, or conflicts with, other
segments to be expressed. It then becomes possible to express the requirement for a top-level
functional capability (e.g., a tool for editing an Air Tasking Order) and then recursively traverse a
dependency tree to identify all required segments for the desired capability.

These benefits apply equally well to UNIX and NT environments and are in fact not dependent upon the
underlying operating system.

The DII COE is a superset of capabilities. It contains far more functionality than would ever be installed on
a single platform or even at a specific operational site. Thus, it is important to note and understand that just
because a segment is part of the COE, it is not necessarily always present or required. Considerable
flexibility is offered to customize the environment so that only the segments required to meet a specific
mission-application need are present at runtime. This approach allows minimization of hardware resources
required to support a COE-based system.

To illustrate the point, consider an example. The COE contains a service for displaying maps. However,
some C4I operators in command centers only need to read and review message traffic and do not need or
want to view a tactical display. Logistics operators using GCSS do not need to see the tactical picture at all
and may only desire to see a map when planning transportation routes. For such operators it is not
necessary at runtime to have the extra memory and performance overhead of the segments that generate
cartographic displays.

Understanding the concept of a segment is fundamental to understanding and using the DII COE. It is,
however, only the starting point. Given the background on how COE-based systems are packaged, it is now
time to understand the internal structure of the DII COE.

2.1.1 COE Taxonomy

Segments that comprise the COE can be categorized in several ways. The original GCCS COE was
subdivided into 19 functional areas and was organized largely by technologies employed such as network,
database, and Mapping, Charting, Geodesy, and Imaging (MCG&I). Working groups were established for
each of the 19 functional areas to consolidate operational requirements from each of the services/agencies
and to evaluate and recommend candidate modules as core components. This taxonomy was initially
successful and led to several early successes. However, the large number of working groups defined by this
taxonomy quickly became unwieldy and communication within and between working groups became
infeasible.

The DISA COE Design Working Group revisited the COE taxonomy as part of the effort to expand the
GCCS COE into a DII COE. The present taxonomy consists of two layers: Infrastructure Services and

Fundamental COE Concepts

DII COE I&RTS: Rev 3.0 July 1997 25

Common Support Applications11. These two layers are described in more detail in the Architectural Design
Document for the Defense Information Infrastructure (DII) Common Operating Environment (COE), and
summarized in Figure 2-1. While encompassing the same functionality as the original 19 functional areas,
this taxonomy approaches the problem from an architectural perspective rather than functional, and greatly
reduces the communications burden in and between working groups. Figure 2-1 will be updated to include
other functional areas as appropriate as the COE is extended to other mission domains. It has been updated
since the Architectural Design Document to extend it for logistics support and to include a Web Server.
This server is provided to allow access to COE-based applications from a Web browser. A later chapter in
the I&RTS describes the COE Web in more detail.

The difference between Infrastructure Services and Common Support Applications is the difference
between data and information (i.e., processed data). It is the difference between exchanging data and
sharing data. Infrastructure Services provide low-level tools for data exchange. These services provide the
architectural framework for managing and distributing the flow of data throughout the system. Example
services include Transmission Control Protocol/Internet Protocol (TCP/IP) and User Datagram Protocol
(UDP) protocols, DCE, and CORBA. The achievement of effective data sharing requires use of all the COE
services, especially those provided by the Shared Data Environment (SHADE). Subsection 2.1.2.5
describes SHADE in more detail.

Common Support Applications, on the other hand, provide the architectural framework for managing and
disseminating information flow throughout the system, and for sharing information among applications.
This level contains facilities for processing and displaying common data formats and for information
integration and visualization. Services in this layer tend to be mission-domain specific. Examples include
generation and dissemination of mission-relevant alerts, and word processing support.

Figure 2-1 also shows that there is a relationship between the service provided and whether it is typically
provided by a COTS product or a GOTS product. The DII COE uses COTS whenever possible, in keeping
with DOD directives. Infrastructure Services are normally provided by COTS solutions because they are
closely tied to underlying vendor products such as the operating system. Common Support Applications,
because the services they provide are closely related to mission applications, tend to be provided by GOTS
solutions. In some cases, especially in the Office Automation area, services may include COTS solutions.

Selection of software modules that fulfill these COE component responsibilities is an ongoing task as is the
evolutionary nature of the DII COE. Changes are made to further populate the COE, to optimize selected
components, or to extend the COE to meet requirements from other mission domains. Even though the
process is evolutionary, the COE preserves backwards compatibility so that mission applications are not
abandoned just because there is an update of the COE. Refer to the appropriate API, User’s Guide, and
system release documents for detailed information on the components currently selected for the COE.

2.1.2 COE Architecture

Figure 2-2 is a simplified diagram that illustrates the various levels within the DII COE and the relationship
between the COE, component segments, mission-application segments, and SHADE. As can be seen, the
COE encompasses APIs, GOTS and COTS software, the operating system, windowing software, standards
(TAFIM), and specifications (User Interface Specification, I&RTS, etc.). Physical databases are also
considered to be part of the COE12, including the software (such as the RDBMS), which accesses and

11 The concepts of a COE kernel and SHADE are presented later in this section. Both of these concepts
should be viewed as subsets of the Infrastructure Services and Common Support Applications layers. The
COE kernel is a limited subset of the Infrastructure Services that is required on every platform regardless of
how it will be used. SHADE is a subset of Infrastructure Services and Common Support Applications that
deals with database issues. It is frequently useful to discuss the kernel and SHADE as separate entities, but
their functionality is fully contained within the two layer taxonomy discussed in this section.
12 In previous COE releases, physical databases were considered outside the scope of the COE although the
database software was inside the COE. The programmatic decision to temporarily exclude physical

Fundamental COE Concepts

DII COE I&RTS: Rev 3.0 July 1997 26

manages the data. SHADE is an integral part of the DII COE, and encompasses databases and related
software as noted in the diagram. SHADE and each of the layers are described in more detail below. A
Developer’s Toolkit is also provided in the COE as shown in Figure 2-2.

Figure 2-2 is a generic diagram intended only to show relationships. The labeled boxes in the figure are not
intended to be exhaustive, but are representative services because (a) otherwise the diagram would be
needlessly complicated, and (b) the COE is evolving to include other segments to support new mission
domains. The services shown are representative, but the structure and principles discussed are the same
across all mission domains.

Office
Automation

MCG&I Correlation

Alerts
Message

Processing
Logistics
Analysis

Online
Help

Data Access
Services

Common Support Applications

Management
Services

Comms Web
Server

Workflow
Management

Distributed
Computing

Global Data
Management

Presentation
Services

Data
Management

Infrastructure Services

Operating System Services

COTS
Solutions

GOTS
Solutions

Figure 2-1: DII COE Services

databases was made in order to concentrate on the services that would more directly support mission
applications. Databases are now included in the DII COE as part of the SHADE.

Fundamental COE Concepts

DII COE I&RTS: Rev 3.0 July 1997 27

To use a hardware analogy, the COE is a collection of building blocks that form a software “backplane.”
Segments “plug” into the COE just as circuit cards plug into a hardware backplane. The blocks containing
the operating system and windowing environment are akin to a power supply because they contain the
software which “powers” the rest of the system. The segments labeled as COE-component segments are
equivalent to already built boards such as Central Processing Unit (CPU) or memory cards. Some of them
are required (e.g., CPU) while others are optional (e.g., a specialized communications interface card)
depending upon how the system being built will be used. The blocks in Figure 2-2 labeled as mission
application areas are composed of one or more mission-application segments. These segments are
equivalent to adding custom circuit cards to the backplane to make the system suitable for one purpose or
another.

The API layer shown in Figure 2-2 defines how other segments may connect to the backplane and utilize
the “power supply” or other “circuit cards.” This is analogous to a hardware schematic diagram that
indicates how to build a circuit card that will properly plug into the backplane. The figure also implies that
APIs are the only avenue for accessing services provided by the COE. This is true for all COE software and
all layers, including COTS software. However, the COE does not create an additional layer on top of the
COTS software. These components may be accessed directly using vendor-supplied APIs for these
commercial products as long as such usage does not circumvent the intended COE architecture. For
example, the COE includes a POSIX-compliant operating system. Some vendors provide non-POSIX
compliant extensions to the operating system services. Use of such extensions, even though they are readily
available through vendor-supplied APIs, is not allowed because such usage violates the intended COE
architecture.

This hardware analogy can be extended to the SHADE portion of the COE, but with some significant
distinctions. Within this conceptual model, the Database Management System (DBMS) functions as the
COE’s disk controller and disk drives. The applications’ databases can be equated to directories or
partitions on the drives accessed through the DBMS “disk controller.” Data objects belonging to each
database then can be considered as files within those “directories.”

This analogy is critical to understanding the modularity limitations for databases within the COE. One can
replace most peripherals or circuit cards without any side effects just as one can replace mission
applications without losing information. However one cannot put in a larger disk drive, or change from one
type of controller to another, without losing the data on the disk. While upgrading mission applications is
like swapping circuit cards, upgrading databases is like rebuilding a disk or directory structure. Instead of
replacing a component, one must save and then restore the files on the disk. Proper design of COE/SHADE
databases must provide the ability to perform field upgrades without the loss of any data.

COE/SHADE databases are divided among segments as are mission applications, but with a different
focus. Mission applications are segmented based on their functionality. Databases are segmented
functionally by the subject areas of the mission applications they support. Mission applications are
functional modules; databases are information modules.

The precise configuration of COTS products used in the COE is placed under strict configuration control.
This is necessary because configurable items such as the amount of shared memory or swap space must be
known and carefully controlled in order for other components in the COE to operate properly. For this
reason, COTS products are assigned a version number in addition to the vendor-supplied version number so
as to be able to track and manage configuration changes. Databases are also assigned version numbers
because their configurations must be controlled since the data content may change from release to release,
or the database schema may change.

A fundamental principle throughout the COE is that segments are not allowed to directly modify any
resource “owned” by another segment. This includes files, directories, modifications to the operating
system, and modification to windowing environment resources. Instead, the COE provides tools through
which a segment can request extensions to the base environment. The importance of this principle cannot
be overemphasized because environmental interactions between software components are a primary reason
for difficulties at integration time. By providing software tools that arbitrate requests to extend the

Fundamental COE Concepts

DII COE I&RTS: Rev 3.0 July 1997 28

environment, integration can be largely automated and potential problem areas can be automatically
identified.

For example, the COE predefines a set of ports in the UNIX /etc/services file. Some segments may
need to add their own port definitions, but this will create conflicts if the port definitions are the same as
those defined by the COE or another segment. To identify and prevent such conflicts, segments issue a
request to the COE (see Chapter 5 for how this is done) to add their port definitions. This process is called
environment extension because a segment is modifying the predefined environment by extension, not
through replacement or deletion.

COE-component segments shown in Figure 2-2 are typically designed to be servers, although some are
provided as libraries to be linked with an application segment. Note that in practice such segments will
often operate in both a client and server mode. For example, a track management segment is a server for
clients that need to retrieve the current latitude/longitude location of a platform. But the track manager
itself is a client to a communications server that initially receives track-related reports from sensors or other
sources. Refer to the Architectural Design Document for the Defense Information Infrastructure (DII)
Common Operating Environment (COE) document for more detailed discussion of how COE-component
segments are designed and interact. For purposes of the present discussion, it is sufficient to view COE
segments as servers that are accessible through APIs.

2.1.2.1 COE Kernel

The COE will normally make available a large number of segments, not all of which are required for every
application. The COE kernel is the minimal set of software required on every platform regardless of how
the platform will be used. The COE kernel13 components are shown in Figure 2-2 and include the Operating
System and Windowing Services and a collection of other services that properly belong in the
Infrastructure Services Layer.

13 The kernel includes both COTS (e.g., operating system) and GOTS software. The other COE layers also
contain COTS software. Contact the DII Engineering Office for information on responsibility for obtaining
licenses for COTS products within the COE and kernel, and for which COTS product DISA will distribute.

F
undam

ental C
O

E
 C

oncepts

D
II C

O
E

 I&
R

T
S: R

ev 3.0
July 1997

29

MISSION
APPLICATIONS

Business
Applications

Functional
Applications

JOINT/CINC
Applications

Service C2
Applications

Intelligence
Applications

C
O
E

Developer’s Tkit
Standard Application Program Interfaces

Standards:
- I&RTS
- Style Guide
- POSIX
- TAFIM
- JTA

COMMON SUPPORT APPLICATIONS

Alerts CorrelationMCG&I Msg ProcOffice Automation Logistics AnalysisOnline Help

Management
Services

Comms Distributed
Computing

Presentation
Services

Workflow
Management

Web
Server

INFRASTRUCTURE SERVICES

Operating System Services (Unix, NT) and Windowing (X, Motif, NT)

Network Svcs
(NIS+, DNS)

System Mgmt
Services

COE
Tools

Executive
Manager

Print
Services

Security Mgmt
Services

K
E

R
N

E
L

S
H
A
D
E

Data Access

Data
Mgmt

Global Data
Management

Databases

Other
Files

Intel
DB

Combat
Support

DB’s

Strategic
Specific
C2 DB’s

Tactical
Specific

DB’s

F
igure 2-2: D

II C
O

E
 A

rchitecture

Fundamental COE Concepts

DII COE I&RTS: Rev 3.0 July 1997 30

A COE kernel will always contain the operating system and windowing environment, but it will normally
include six other features:

1. a basic System Administration function,
2. a basic Security Administration function,
3. an Executive Manager function (e.g., a desktop GUI such as Windows NT or Common Desktop

Environment [CDE]),
4. a template for creating privileged operator login accounts,
5. a template for creating non-privileged operator login accounts, and
6. COE tools for segment installation.

The System Administration segment is required because it contains the software necessary to perform basic
system administration tasks such as user account and profile management. The Security Administration
segment is required because the security administrator uses it to enforce system security policy. The
operating system and other COE components provide security policy enforcement. Segments loaded later
may provide additional system and security administration capabilities, but the minimum capabilities for
security enforcement and security administration are in the kernel.

The Executive Manager component of the kernel is required because it is the interface through which an
operator issues commands to the system. The Executive Manager is an icon-and-menu-driven desktop
interface, not a command-line interface. The templates included in the COE kernel are used to define the
basic runtime environment context that an operator inherits when he logs in (which processes to run in the
background, which environment variables are defined, etc.). The COE tools within the kernel allow other
segments to be installed and enforce critical COE principles. The COE kernel assures that every platform in
the system operates and behaves in a consistent manner and that every platform begins with the same
environment.

2.1.2.2 Infrastructure Services

Infrastructure Services are largely independent of any particular application. Within the Infrastructure
Services layer, Management Services include network, system, and security administration.
Communications Services provide facilities for receiving data external to the system and for sending data
out of the system. Distributed Computing Services provide the infrastructure necessary to achieve true
distributed processing in a client/server environment. Presentation Services are responsible for direct
interaction with the human whether that be through windows, icons, menus, or multimedia. Data
Management Services include relational database management as well as file management in a distributed
environment. Workflow and Global Data Management Services are oriented towards managing logistics
data (e.g., parts inventory, work in process). Note that Data Management Services and Global Data
Management Services are part of SHADE.

2.1.2.3 Common Support Applications

Unlike Infrastructure Services, Common Support Applications tend to be much more specific to a particular
mission domain. The Alerts Service is responsible for routing and managing alert messages throughout the
system whether the alert is an “out of paper” message to a systems administrator or an “incoming missile”
alert to a watch operator. The Correlation Service is responsible for maintaining a consistent view of the
battlespace by correlating information from sensors or other sources that indicate the disposition of
platforms of interest. MCG&I Services handle display of National Imagery and Mapping Agency (NIMA)
maps or other products, and imagery received from various sources. Message Processing Services handle
parsing and distribution of military-format messages. Office Automation Services handle word processing,
spreadsheet, briefing support, electronic mail, World-Wide-Web browsers, and other related functions.
(Browsers are in the Common Support Applications layer, but Web Servers fall within the Infrastructure
Services layer.) Logistics Analysis contains common functions, such as Pert charts, for analyzing and
displaying logistics-related information. Online Help Services provide applications with a uniform

Fundamental COE Concepts

DII COE I&RTS: Rev 3.0 July 1997 31

technique for displaying context-sensitive help. Finally, Data Access Services are part of SHADE and
provide applications with common data-access methods procedures, and tools.

2.1.2.4 COE Developer Toolkits

Since the COE is not a system but a foundation on which systems are built, the COE contains a collection
of developer toolkits to assist the developer in creating mission-application software. This is illustrated in
Figure 2-2 in the block labeled Developer’s Toolkit. However, the toolkits are required only during
software development, not during runtime at an operational site. Therefore, developer toolkits are shown as
part of the COE, but outside the Infrastructure Services and Common Support Applications layers. They are
obtained from DISA separate from an actual installable system.

The COE developer toolkits contain libraries of APIs and a collection of tools to assist in the segmentation
process. An overview of the software development process is presented in the next chapter. Appendix C
provides an overview of the COE developer tools (and lists some COE runtime tools). Refer to the
appropriate DII COE Programmer’s Guides for detailed information on the APIs and segmentation tools.

2.1.2.5 SHADE

SHADE is an important addition to this version of the I&RTS. Its purpose is to provide the data “missing
piece” for the DII COE. The present subsection provides an overview of SHADE and describes how it fits
into the overall DII COE. A later chapter will cover SHADE and database topics in much more technical
detail and depth.

Present systems are not truly interoperable because of inconsistency in algorithms, but also because data
management across systems and operational sites has led to data redundancy and inconsistencies.
Moreover, even when data is consistent across systems, it is not presently structured so as to be shareable.
The SHADE approach is to provide the architectural structure to solve the data sharing problem that in turn
guarantees data consistency, eliminates redundancy14, and promotes true data interoperability and sharing.
The SHADE goal is to allow any authorized user from any authorized workstation to locate, access, and
integrate shared and synchronized data. This is in keeping with the DISA vision of an integrated global
environment that allows warriors to perform “Any Mission, Any Time, Any Where.”

SHADE is both a strategy for data sharing and the mechanisms to achieve it. SHADE is an integral part of
the DII COE, but it must also bridge the gap between COE-based systems and legacy non-COE systems
because it must provide mechanisms for accessing large databases that are still on legacy mainframes.
SHADE provides COE-component segments in both the Infrastructure Services and Common Support
Applications layers to accomplish this task. SHADE includes the required data-access architectures, data
sharing methodology, reusable software and data components, and guidelines and standards for the
development and migration of systems that meet the user’s requirements for timely, accurate, and reliable
data.

The SHADE components of Figure 2-2 are expanded upon in Figure 2-3 to show the architecture from a
data management perspective. From a process point of view (top part of the diagram), SHADE includes

14 Databases are often deliberately replicated in actual practice for performance reasons. The term
“redundant data” is used when the same data is captured by different systems and stored in different
databases. For example, the friend/foe status of a particular country might be entered into two systems
where each system must maintain and keep the data current. By contrast, when intentional replication is
used, the friend/foe status is captured and maintained by one system and provided to another for its use.
SHADE may not rule out multiple copies of the same data but it does manage the duplication to ensure that
all databases are kept synchronized. Present systems often do not employ effective mechanisms for data
replication, leading directly to significant interoperability problems. SHADE does eliminate redundancy
between systems because, for performance reasons, it replicates and manages duplication across systems to
ensure data consistency.

Fundamental COE Concepts

DII COE I&RTS: Rev 3.0 July 1997 32

tools for validating database segments and a repository for data reuse. Metadata Management is at the top
layer between the mission applications and data-access methods. This layer is among the more challenging
aspects of SHADE because it requires standardization across the joint community. The Shared Data Access
layer provides services for locating and retrieving the desired data. This layer also manages data replication
and distribution to ensure that all databases are kept closely synchronized. Data security is also provided in
this layer.

The Physical Data Management layer is provided by commercial products and is initially organized as
relational databases. (Migration to include other database management technologies such as object-oriented
or object relational will be achieved as requirements emerge and technology matures.) SHADE physical
data management services may also include document retrieval, image management, engineering drawings,
or other specialized storage and retrieval technologies where appropriate. The databases may be distributed
across the network, and may in fact be distributed among geographical sites.

Figure 2-3 shows three types of database segments according to their scope and how they are shared. The
three types are Unique, Shared, and Universal.

Unique database segments are those which are typically used by only one application or are under the
configuration control of the segment sponsor. Unique data may be shared between applications, but the
usage is restricted to a single mission domain. An example of a Unique database segment is a configuration
table that an application reads at initialization time. Such a table would not normally be used by other
applications. This example also demonstrates that Unique database segments may frequently be represented
by a flat file or similar structure rather than a true database.

Shared database segments support the information requirements of multiple applications or across multiple
database segments. Shared database segments are typically mission-or-functionally-oriented, and are
generally specific to a limited number of mission domains. Because they affect multiple applications that
will likely span services or functional areas, Shared database segments must be under joint configuration
control. An example of such a database segment is a database of logistics drawings for military hardware.
Such data spans multiple services, it is used for different purposes (e.g., ordering, inventory control,
maintenance) and hence spans multiple applications, but it is generally limited in scope to the logistics
community. Another example is a segment containing invoice information that is required by both the
finance and procurement communities.

Universal database segments represent the other extreme of “shareability.” Universal database segments
reflect a need for identical data in diverse areas, are used by many applications, and span multiple mission
domains. Universal database segments usually have no dependency on any other segment (except the
DBMS segment) and frequently consist of a small number of tables and elements. A common type is
reference or lookup tables. An example is a database of country-code abbreviations. A larger example
would be the equivalent of “Jane’s Data” with characteristics and performance data concerning weapons,
aircraft, ships, and communications systems. Universal database segments are under stricter configuration
control and require DISA and DOD Data Administration coordination.

The three database segment types are listed in increasing order of scope and “shareability.” That is, Unique
is limited in scope and therefore unlikely to be shared by many applications, while Universal is very broad
in scope and must be shared across applications in order to promote true interoperability. There is no
physical difference in the database segments, but the level of configuration management increases due to
the wider impact changes would have on operational systems that use the database segments.

2.1.2.6 COE “Plug and Play”

The DII COE is structured as a “plug and play” architecture. The key to the “plug and play” design is
conformance to the COE through the rules detailed in this document and through using only the published
APIs for accessing COE services. There is considerable danger in using unpublished, “private” APIs, or
APIs from legacy systems, because there is no guarantee that interfaces used in this fashion will remain the

F
undam

ental C
O

E
 C

oncepts

D
II C

O
E

 I&
R

T
S: R

ev 3.0
July 1997

33

sam
e or even exist in subsequent releases. T

his is also generally true of C
O

T
S products and the risks are

the sam
e.

Mission
Applications

R
ep

ository an
d T

ools

M
anagem

ent

D
atabase E

ngineering/M
igration P

rocess

JOINT/CINC
Applications

Service C2
Applications

Intelligence
Applications

Business
Applications

Functional
Applications

Metadata
Management

Data
Standards

MappingsModelsSchemas

Database
Packaging

Physical
Data Storage

Database
Administrator

Physical Data
Management

Unique
Shared
Universal

Shared
Data

Database
Segments

Legacy/
External

Data
Shared Data

Servers

Shared Data
AccessData Replication/Distribution

Data Location (Directory)

Data Security/Integrity

Data Mediation (Syntax - Semantics)

F
igure 2-3: SH

A
D

E
 D

ata A
rchitecture

Fundamental COE Concepts

DII COE I&RTS: Rev 3.0 July 1997 34

Discussion of the COE as a “plug and play” architecture is not intended to trivialize the effort that may be
required to develop and integrate a segment into the COE. Migration of existing legacy systems to the COE
is conceptually straightforward but may require considerable effort due to the requirement to switch to a
different set of building blocks. That is, the effort may not be so much in adjusting to a new architectural
concept but in adjusting code to use a different set of APIs. The “plug and play” paradigm is a good
conceptual model because it clearly conveys the goal and the simplicity that most segment developers will
encounter.

2.1.3 COE Configuration Definitions

A COE-based system will consist of a large number of segments. It is neither desirable nor feasible to
install all segments on all platforms. Some segments need to be installed on one platform but not another
because of the role that the platform will play in the overall system. For example, systems will often
dedicate one or more platforms with large-capacity disk drives to be configured as database servers.
Workstations that operators use, client workstations, will not have large enough drives to handle the
database storage requirements. Therefore, the database server software should be loaded on the database
server but not the client platform. The COE kernel is required on every platform, but additional segments
are dependent upon how the platform will be used.

The COE includes the ability to create configuration definitions that define which segments are to be
loaded on which platforms. A configuration definition15 is a hierarchy that defines collections of segments
that are grouped together for installation convenience. For example, it is more convenient for an installer to
indicate that a platform is to act as a database server (a configuration definition) or used as an intelligence
analyst workstation (another configuration definition) than to manually and individually select all of the
segments that need to be installed. The COE is designed so that a site may install predefined configuration
definitions or can customize the installation to suit site-specific requirements.

A configuration definition is organized into folders, configurations, and bundles. Figure 2-4 uses an
example from the GCCS system to show the relationship between each of these terms, and to illustrate the
flexibility in predefining and managing software installations. The example shows how the GCCS system
could be organized into configuration definitions, but not how GCCS must be organized. The example is
not intended to convey that platforms must be dedicated to a single, specific function. As long as there are
no segment conflicts, a platform may be configured to support multiple missions and thus achieve the goal
of “any platform for any function.” The example is intended only as an aid to understanding how
configuration definitions may be constructed.

The objective of the example shown in Figure 2-4 is to install identical database servers in Intelligence
centers at two GCCS sites: a Commander, Joint Task Force (CJTF) and a Commander-in-Chief
Headquarters (CINCHQ). In this simplified example, both Intelligence centers use imagery applications,
but the Intel center at the CINCHQ has access to hardware for capturing images, while the one at the CJTF
does not.

For simplicity, the database server is to consist of 4 segments: a segment for creating database backups
(Bkup), an ad hoc query application (AdHocQ), a presentation package (Forms), and a patch (Patch1).
The imagery software is to consist of an application for creating briefs (Brief), an application for
capturing images (Capture), and an application for converting images from one format to another
(Convert).

15 The term Configuration Definition replaces the term variant in previous I&RTS releases. The concepts
are exactly the same except that variant has the negative connotation of implying a “deviation.” Further, the
Configuration Definition concept is more refined in this I&RTS version in its decomposition into folders,
configurations, and bundles.

Fundamental COE Concepts

DII COE I&RTS: Rev 3.0 July 1997 35

A configuration definition file is a file that describes the hierarchy and relationships among folders,
configurations, bundles, and segments that comprise a distribution. A distribution16 is the physical media
used to install DII-compliant segments (e.g., Digital Audio Tape [DAT] tape, 8mm tape, Compact Disc
Read Only Memory [CDROM]). A single distribution may span multiple media of the same type (e.g.,
several DAT tapes, several CDROMs). A configuration definition file is used to generate the table of
contents for what is contained in the distribution.

In addition to being physical media, another useful way to think of a distribution is as a high-level division
that can be used to distinguish between systems (e.g., GCSS, GCCS, ECPN), as shown in this example.
The example would work equally well by defining the desired distributions one level lower in the tree and
thus place responsibility for site configurations on a manager responsible for the site, rather than on a
manager responsible for GCCS configurations at all sites. A distribution is not sufficiently detailed to
permit the actual installation of any software since it must be decomposed further to the level of an actual
platform.

A folder, likewise, is a non-installable list of one or more folders, configurations, or bundles. Folders are
used for organizational and display purposes only. A folder is not directly installable because it is organized
at a level that spans multiple platforms and perhaps even multiple sites. In this example, the GCCS
distribution media is composed of multiple folders at the top level representing geographically dispersed
sites. The next lower level of folders is contained within a single site.

A configuration is a list of bundles and/or segments that can be installed on a single machine.
Configurations are mutually exclusive. That is, only one configuration can be installed on a single machine
because there may be conflicts within the segments that comprise two different configurations. In the
example, the Intel folder for the CJTF site contains two configurations for platforms: a database server
configuration (DBServer) and an imagery configuration (Imagery1). A particular platform may be
loaded with a DBServer or an Imagery1 configuration, but not both. This does not mean that imagery
applications cannot reside on a database server. It only means that in this example, an engineering decision
was made to prevent it from happening because of potential resource conflicts between the two
configurations. If it were actually desirable to combine the applications in practice, a configuration could be
defined which contained database server and imagery bundles. Or, desired segments could be selected
individually for loading onto the platform.

16 The distribution term is a POSIX concept. It has been modified slightly in the I&RTS to include
segments.

Fundamental COE Concepts

DII COE I&RTS: Rev 3.0 July 1997 36

FFG CVN CJTF ... MEF CINCHQTRANSCOM ...

Crypto Ops Intel EW Logistics ... Ops Intel ...

DBServer Imagery1

Convert CaptureBriefBkup AdHocQ FormsPatch1

DBUtils Camera

DBServer Imagery2

Distributions

Configurations

Bundles

Segments

Folders

Folders

GCCS
GCSS

ECPN
...

Figure 2-4: Configuration Definitions

A bundle17 is a list of other installable bundles and/or segments. For brevity, Figure 2-4 does not show any
bundles that contain other bundles. A bundle is directly installable, even if it contains further bundle
definitions because the segments that comprise the bundle are checked when the bundle is created to verify
that they do not conflict with one another. In the example shown, there are two bundles: DBUtils and
Camera. The DBUtils bundle is used at both the CJTF and CINCHQ sites, but Camera is only used at
CINCHQ.

There are several things to note about this example.

1. At installation time, the installer can use the installer tool to select a configuration and all of the
appropriate segments will automatically be installed. The installer may also choose to decompose the
configuration to look at individual bundles and segments and install them individually instead.

2. Configurations, bundles, and segments may be selected and installed directly without further selection

on the part of the installer. Folders cannot; the installer must select some lower level in the hierarchy.

3. Folders may participate in multiple distributions or other folders; configurations may participate in

multiple folders; bundles may participate in multiple configurations; and segments may participate in
multiple bundles or configurations. Multiple participation is subject to the constraint that segments
within a configuration or bundle cannot contain conflicting segments.

4. Configuration definitions are optional. They are provided as a convenience only. Also, it is possible to

skip any of the levels in the configuration definition except for the lowest level (i.e., segments).

17 The bundle concept is from POSIX, but has been modified slightly in the I&RTS to include segments.

Fundamental COE Concepts

DII COE I&RTS: Rev 3.0 July 1997 37

5. If a segment is selected twice either on purpose or as a result of how the configuration definition is

constructed, it is actually installed only once.

6. Care should be taken in creating configuration definitions. It is wise to keep classified segments

separate to avoid security management problems.

The same media can be used to load any platform regardless of which site or in which space the platform is
located; however, during the installation process, only that portion of the configuration definition required
for a particular platform is actually loaded. The COE kernel is a required member of every distribution.

There are several advantages to configuration definitions:

• From a configuration management and security perspective, only one set of distribution media needs to
be controlled. All software and data that are needed for the installation are contained on the media.

• From an installation perspective, the site installer only has one set of distribution media to worry about

regardless of platform use or hardware type. (The COE tools allow segments for multiple platforms to
exist on the same physical distribution media. At installation time, the software determines the
platform type and then makes available for selection only those segments that can execute on the
platform.)

• From a system design perspective, the ability to create configuration definitions allows the flexibility

of loading and executing only that software which is required to support a particular mission
requirement.

2.1.4 DII Compliance

The degree to which “plug and play” is possible is highly dependent upon the degree to which segments are
DII-compliant. DII compliance is defined to be an integer value that measures

• the degree to which a segment or system achieves conformance with the rules, standards, and
specifications identified by the COE,

• the degree to which the segment or system is suitable for integration with the DII COE reference
implementation, and

• the degree to which the segment or system makes use of COE services.

Appendix B contains a detailed checklist for areas where compliance is mandatory and an additional
checklist for areas where compliance will be required in the future but are optional at present. The
compliance level for a segment is determined by answering “True,” “False,” or “N/A” for each question in
the checklist. The Category 1 (see below) compliance level assigned is the highest numbered level for
which there are not “False” replies. The COE provides a suite of tools, described in Appendix C, which
validate COE conformance.

By its very nature, an exhaustive list of “do's and don'ts” is not possible. DII compliance must be guided by
overarching principles with checklists and tools to aid in detecting as many problem areas as possible. Full
DII compliance embodies the following principles:

1. Segments shall comply with the guidelines, specifications, and standards defined in the I&RTS, the
User Interface Specification, DII Software Quality Compliance Plan, and related documents such as
the JTA.

2. Software and data shall be structured in segment format. Of necessity, COTS components of the COE

kernel are exempted from this requirement. Segment format is described more fully in Chapter 5.

Fundamental COE Concepts

DII COE I&RTS: Rev 3.0 July 1997 38

3. Segments shall be registered and submitted to the online library. The registration process is described
in Appendix E while submission of segments to the online library is described in Chapter 10 and
Appendix D.

4. Segments shall be validated with the VerifySeg tool prior to submission, and shall successfully pass

the VerifySeg tool with no errors. An annotated listing of the VerifySeg tool output shall be
submitted with each segment release.

5. Segments shall be loaded and tested in the COE environment prior to submission. Segment developers

are responsible for testing their segment within the full COE kernel and with all COE-component
segments that they depend upon. There is no requirement to include mission-application segments in
the test for which there is no dependency.

6. Segments shall fully specify dependencies, conflicts, and required resources through the appropriate

segment descriptors defined in Chapter 5.

7. Segments shall be designed to be removable and tested to confirm that they can be successfully

removed from the system. Some segments, especially COE components, are designed to be
“permanent” but even these must be removable when a later segment release supersedes the current
one.

8. Segments shall access COE components only through APIs published by DISA and segments shall not

duplicate functionality contained within the COE. There is no requirement to integrate to COE
functionality not required by the segment, but note that some segments may have an implied
dependency on other segments.

9. Segments shall not modify the environment or any files it does not own except through environment

extension files or through use of the installation tools provided by the COE.

The DII COE defines four areas in which compliance is measured, shown in Figure 2-5, called compliance
categories. Within a specific category, a segment is assigned an integer value, called the compliance level,
which is a measure of the degree to which a segment is compliant within that category. The DII COE takes
this approach because it is especially useful in developing migration strategies for legacy systems.
Compliance categories indicate the broad area in which a segment must be improved while compliance
levels express the degree to which the segment meets COE objectives within that category.

The four DII compliance categories are:

Category 1: Runtime Environment. This category measures how well the proposed software fits
within the COE executing environment, and the degree to which the software reuses COE
components. It is an assessment of whether or not the software will “run” when loaded on a COE
platform, and whether or not it will interfere with other segments. This category is closely related
to, and is a way of measuring, interoperability.

Category 2: Style Guide. This category measures how well the proposed software operates from
a “look and feel” perspective. It is an assessment of how consistent the overall system will appear
to the end user. It is important that the resulting COE-based system appear seamless and consistent
to minimize training and maintenance costs.

Category 3: Architectural Compatibility. This category measures how well the proposed
software fits within the COE architecture (client/server architecture, DCE infrastructure, CDE
desktop, etc.). It is an assessment of the software's potential longevity as the COE evolves. It does
not imply that all software must be based on client/server or Remote Procedure Call (RPC)
techniques. It simply means that a reasonable design choice has been made given that the specific
architectural characteristics of the COE reference implementation.

Fundamental COE Concepts

DII COE I&RTS: Rev 3.0 July 1997 39

Category 4: Software Quality. This category measures traditional software metrics (lines of
code, McCabe complexity metric, etc.). It is an assessment of program risk and software maturity.

Runtime
Environment Style Guide

Architectural
Compatibility

Software
Quality

0 j 0 k 0 n 0 m

Figure 2-5: DII Compliance Categories and Levels

Note: While there are four compliance categories, style-related items
are included within the I&RTS checklist. Specifications within
the User Interface Specification are mapped to these items at the
appropriate compliance level where they are included. For
example, Category 1 (Runtime Environment) Level 5
compliance requires adherence to the “look and feel” of the
native GUI. The User Interface Specification contains a checklist
for verifying that a segment conforms to the native GUI.

These four categories attempt to quantitatively answer the following questions about a proposed addition to
the system:

• (Category 1: Runtime Environment) Can the proposed software be added to the system? Will
it adversely affect system interoperability?

• (Category 2: Style Guide) Is the proposed software user-friendly? Will it make the system

appear seamless to an end user?

• (Category 3: Architectural Compatibility) Is the proposed software architecturally sound and

in line with where the COE is going? Will technology advances quickly obsolete the proposed
software?

• (Category 4: Software Quality) What is the program risk? Will significant program

expenditures be required for life-cycle maintenance of the product?

The principles and techniques described in the remainder of this subsection apply to each of the compliance
categories. However, only the compliance levels for the Runtime Environment Category will be discussed
any further.

The COE defines eight progressively deeper levels of integration for the Runtime Environment Category.
These levels are directly tied to the degree of interoperability achieved as is described in subsection 2.1.5.
Note that levels 1-3 are “interfacing” with the COE, not true integration. True integration begins at level 4.

Level 1: Standards Compliance Level. A superficial level in which the proposed capabilities
share only a common set of COTS standards. Sharing of data is undisciplined and minimal
software reuse exists beyond the COTS. Level 1 may, but is not guaranteed to, allow simultaneous
execution of the two systems.

Fundamental COE Concepts

DII COE I&RTS: Rev 3.0 July 1997 40

Level 2: Network Compliance Level. Two capabilities coexist on the same LAN but on different
CPUs. Limited data sharing is possible. If common user interface standards are used, applications
on the LAN may have a common appearance to the user.

Level 3: Platform Compliance Level. Environmental conflicts have been resolved so that two
applications may reside on the same LAN, share data, and coexist on the same platform as COE-
based software. The COE kernel, or its equivalent, must reside on the platform. Segmenting may
not have been performed, but some COE components may be reused. Applications do not use
COE services (except for kernel services if the COE kernel is loaded) and are not necessarily
interoperable.

Level 4: Bootstrap Compliance Level. All applications are in segment format and share the COE
kernel. Segment formatting allows automatic checking for certain types of application conflicts.
Use of COE services is not achieved and users may require separate login accounts to switch
between applications.

Level 5: Minimal DII Compliance Level. All segments share the same COE kernel and
functionality is available via the Executive Manager. Boot, background, session, and local
processes are specified through the appropriate segment descriptors. (See Chapter 5 for a
description of the types of processes.) Segments adhere to the basic “look and feel” of the native
GUI, as defined in the User Interface Specification. Segments are registered and available through
the online library. Applications appear integrated to the user, but there may be duplication of
functionality and full interoperability is not guaranteed. Segments may be successfully installed
and removed through the COE installation tools. Database segments are identified as unique or
sharable according to their potential for sharing.

Level 6: Intermediate DII Compliance Level. Segments utilize existing account groups, and
reuse one or more COE-component segments. Minor documented differences may exist between
the User Interface Specification and the segment's GUI implementation. Use of non-standard
Structured Query Language (SQL) in database segments is documented and, where applicable,
packaged in a separate database segment.

Level 7: Interoperable Compliance Level. Segments reuse COE-component segments to ensure
interoperability. These include COE-provided communications interfaces, message parsers,
database segments, track data elements, and logistics services. All access is through published
APIs with documented use of few, if any, private APIs. Segments do not duplicate any
functionality contained in COE-component segments. The data objects contained within a
database segment are standardized according to DOD 8320 guidance.

Level 8: Full DII Compliance Level. Proposed new functionality is completely integrated into
the system (e.g., makes maximum possible use of COE services) and is available via the Executive
Manager. The segment is fully compliant with the User Interface Specification and uses only
published public APIs. The segment does not duplicate any functionality contained elsewhere in
the system whether as part of the COE or as part of another mission application or database
segment.

Bootstrap Compliance (Level 4) is required before a segment may be submitted to DISA for evaluation as a
prototype. Such segments will not be fielded nor accepted into the online library. At DISA's discretion,
segments which meet the criteria for Minimal DII Compliance (Level 5) may be accepted into the online
library, and installed at selected sites as prototypes for user evaluation and feedback. Such segments will
not be accepted as fieldable products. Acceptance as an official DISA fieldable product requires
demonstration of Interoperable Compliance (Level 7) and a migration strategy to Full DII Compliance
(Level 8), unless the proposed segment is an interim product that is targeted to be phased out in the near
term.

Fundamental COE Concepts

DII COE I&RTS: Rev 3.0 July 1997 41

The compliance categories and levels defined here are a natural outcome of developing a reasonable
approach to migrating legacy systems into the COE. The first step of Category 1, covered by Levels 1-4, is
to ensure that systems do not destructively interfere with each other when located on the same LAN.
Level 5 is sometimes called a “federation of systems” in that systems are still maintained as “stovepipes,”
but they can safely share common hardware platform resources. Levels 6-8 complete the approach by
reducing functional duplication, promoting true data sharing, and making the system appear to the user as if
it were developed as a single system. The last three levels represent varying degrees of integration from
marginally acceptable (Level 6) to a truly integrated system (Level 8). All 8 levels represent a progressively
deeper level of interoperability.

The same compliance levels apply to SHADE databases, as well. The majority of the SHADE issues in
Levels 1-4 are concerned with proper use of the COTS database management systems’ functionality and
with not destructively accessing data belonging to other databases. At Level 5, a database must identify
those components of its schema which are candidates for “sharing.” Levels 6-8 reduce and then eliminate
data sets that are redundant with information in shared and universal segments, including database design
modifications and data migration and cleansing to provide interoperability in both data structure and
content.

Compliance checking is done on a segment-by-segment basis according to the definitions given here and
through the checklist approach in Appendix B. The categories and levels described here are independent of
where the segment fits into the system. That is, the same definitions apply whether the segment is a COE-
component segment or a mission-application segment. However, it is sometimes necessary to compute the
compliance level of a collection of segments. This is called a composite compliance level. The remaining
subsections below describe how to compute a composite compliance value for an arbitrary group of
segments, for the COE itself, for a COE-based system, and for systems which contain both COE and non-
COE based computing platforms. A composite value is required because otherwise a system is only as
compliant as its least compliant segment and the least compliant segment may be in the COE18 itself. Thus,
the intent is to not penalize systems for non-compliant components in the COE itself.

Strictly speaking, discussion of DII compliance requires qualification with a category name, a compliance
level, and whether compliance is being measured against a segment or a collection of segments. Thus, it is
correct to say that a particular segment is Category 1, Level 4 compliant, but it could be confusing to omit
the qualifier Category 1. Because of widespread usage in the COE community, when a category is not
stated, Categories 1 and 2 are assumed.19

The I&RTS expressly uses integer values rather than decimals or percentages to state DII compliance.
Expressing compliance as a percentage is both confusing and misleading. For example, to state that a
segment is 85% Level 6 compliant can be interpreted in many ways. It could mean that 85% of the effort
required to achieve Level 6 compliance has been achieved, or that 85% of the functionality in the system is
85% Level 6 compliant. However, it most likely means only that the segment successfully passes 85% of
the Level 6 criteria in Appendix B. Because of the difficulty in precisely interpreting the intended meaning,
only integer compliance values are allowed. Otherwise, it is difficult to quantitatively compare two
segments or systems if both claim to be 85% Level 6 compliant.

18 The COE reference implementation contains software contributed by legacy systems. It may not be cost
effective to expend the effort to achieve full Level 8 compliance for some of these legacy contributions
because they are going to eventually be phased out. In the interim, systems that use these segments should
not be penalized for their lack of compliance.
19 The JTA states a requirement for a minimum of Level 5 compliance as does OSD directive. In both cases,
Category 1: Runtime Environment and Category 2: Style Guide are intended. The requirement is levied on
individual segments, and on COE-based systems.

Fundamental COE Concepts

DII COE I&RTS: Rev 3.0 July 1997 42

2.1.4.1 Compliance for an Arbitrary Group of Segments

Segments are often grouped together, as in a configuration definition. The composite compliance level for
an arbitrary collection of segments is the compliance level for the least compliant segment.20 For example,
suppose a group of four segments have compliance levels of 5, 8, 3, and 8 respectively. Then the composite
compliance level for this group of four segments is 3.

This approach to calculating composite compliance levels intentionally places a heavy penalty on groups
that have segments with low compliance levels and gives no “credit” if there are segments with high
compliance levels. An alternative approach would be to average the levels, but because compliance is a
direct measure of interoperability and because artificially increasing the number of segments could have the
misleading effect of boosting the apparent level of compliance, this approach was rejected.

2.1.4.2 Compliance for the DII COE

Calculating the compliance level for the COE itself requires computing the composite compliance level for
1) the COE kernel, and 2) for the Infrastructure Services and Common Support Applications layers. As
described in subsection 2.1.4.1, the composite compliance level for each of these two groups of segments is
the level of the least compliant segment in the group.

Let Ck be the composite compliance level of the COE kernel. Let Cc be the composite compliance level for
the combined Infrastructure Services and Common Support Applications segments. Then the composite
compliance level for the DII COE (Cdii) is given by the equation

Cdii = TRUNC([Ck + Cc]/2)

where TRUNC means to truncate the result to an integer value.

Consider an example. Assume the kernel has three segments with compliance levels 6, 8, and 5. Assume
there are four segments in the Infrastructure Services layer with compliance levels 8, 8, 7, and 4. Lastly,
assume that there are seven segments in the Common Support Applications layer and all are level 8
compliant.

The composite compliance level for the combined Infrastructure Services and Common Support
Applications segments is the compliance level of the least compliant segment (e.g., 4). Thus, the following
gives the composite compliance level for the DII COE for this example:

Ck = 5
Cc = 4
Cdii = TRUNC([5 + 4]/2) = TRUNC[9/2] = 4.

2.1.4.3 Compliance for a COE-Based System

The composite compliance for a COE-based system is computed in a manner similar to that of computing
the compliance for the DII COE. The approach is to compute the composite compliance level for the
mission-application segments and then factor in the DII compliance. The computation here is valid only if
every platform in the system is COE-based. If there is a mixture, refer to subsection 2.1.4.4.

Let Cma be the composite compliance level of all the mission applications in the system. Let Cdii be the
composite compliance level for the COE computed as described in subsection 2.1.4.2. In computing Cdii,

20 This is how the compliance level for an aggregate segment is measured. (See Chapter 5 for the definition
of an aggregate segment.) The compliance level of an aggregate segment is the compliance level of the
least compliant segment in the aggregate.

Fundamental COE Concepts

DII COE I&RTS: Rev 3.0 July 1997 43

only those segments in the COE that are actually used in the resulting system are considered. Then the
system COE composite compliance level, Cs, is computed as follows:

If Cma < Cdii, then Cs = TRUNC[(Cma + Cdii)/2],
else Cs = ROUND[(Cma + Cdii)/2]

where ROUND means to round the result to the nearest integer.

As an example, assume that a system has five mission applications with compliance levels of 5, 7, 7, 8, and
8. Assume that the DII compliance level for the COE segments actually used in the system is 6. Then the
system composite compliance level is

Cma = 5
Cdii = 6
Cs = TRUNC[(5 + 6)/2] = 5.

If the least compliant segment (level 5) could be improved to reach level 7 with no change in the COE, then
the resulting system compliance level would be increased to 7.

2.1.4.4 Compliance in Mixed Systems

COE-based systems are likely to be created which include a mixture of COE-based and non-COE based
computing platforms. This may occur for several reasons:

1. because required functions in the target system have not yet migrated to the COE,
2. because of the need to interface with legacy systems that are not COE-based (e.g., mainframe

applications),
3. because the COE is not presently available on a required platform, or
4. because the platform is highly specialized and is not appropriate for the COE.

An example of the latter situation is a receiver subsystem that contains dedicated hardware for direct
receiver control. A system built around such components is likely to use a platform on which the COE is
available for operator interaction and for receiver tasking, and hence would be a mixed system.

Calculating the system composite compliance for all four situations is done just as with COE-based systems
described in subsection 2.1.4.3. In the first situation above, the application that contains the required
functionality can still be evaluated against the compliance checklist and so arrive at a compliance level. The
resulting system compliance level will likely be very low.

Computation of the system composite compliance in the last three situations is equally straightforward.
Compliance is computed by ignoring the legacy platforms and platforms for which the COE is not
available.

2.1.5 Interoperability of COE-Based Systems

This subsection describes interoperability in the context of the COE, and shows the relationship between
DII compliance levels and interoperability. But first, it is important to distinguish between interfacing,
integration, and interoperability. The three terms are closely related and often confused, but they are
distinct concepts. Proper understanding of the interrelationship of these three terms makes it clear that the
DII COE is an approach towards integration that goes beyond simple interfacing or “peaceful coexistence”
to true interoperability.

Fundamental COE Concepts

DII COE I&RTS: Rev 3.0 July 1997 44

2.1.5.1 Interfacing Systems

Interfacing is the ability of two systems to exchange data, typically by converting data to an agreed-upon
intermediate format. Interfacing should be viewed as one approach towards achieving interoperability, or as
a first-level approximation of interoperability. For example, military systems frequently interface with one
another by exchange of United States Message Text Format (USMTF) messages. They are able to
“interoperate” to the extent that they can pass meaningful data to one another in an agreed-upon
intermediate USMTF format.

Interfacing provides a limited degree of interoperability but fails to fully satisfy “real-world” operational
requirements. Interfacing

• requires consistent interpretation of the agreed-upon format for data exchange;
• requires systems to stay in synch as the data exchange format changes;
• may result in loss of precision or other attributes (e.g., one system may process latitude and longitude

only in degrees and minutes, while another system may process latitude and longitude down to decimal
fractions of a second); and

• fails to ensure that applications interpret the exchanged data consistently.

For these reasons, successful “interfacing” is often limited to a specific version of the two systems in
question and may not survive when an upgrade to either system is performed. Also note that standards
profiles specify how interfacing can be accomplished.

2.1.5.2 System and Segment Integration

Integration is often used to refer to integration within a system or between systems, or to refer to software
and data integration. Within the context of this document, integration refers to combining segments to
create a system. Segment integration refers to the process of ensuring that segments:

• work correctly within the COE runtime environment;
• do not adversely affect one another;
• conform to the standards and specifications described in this document;
• have been validated by the COE tools; and
• can be installed on top of the COE by the COE installation tools.

Integration requires resolution of compatibility issues between components that are to be interconnected.
Integration attempts to allow sharing of a common resource (such as data) without the need for
intermediate translations from one format to another. Note that the COE is a technique for achieving both
software and data integration; it is the SHADE component of the COE which the technique for assuring
data integration. But the DII COE goes further because COE/SHADE-type integration for software and
data provides true interoperability as a byproduct. The COE with full SHADE does not create any technical
roadblocks to interfacing, but does strongly encourage a deeper level of integration that promotes true
interoperability.

Integration of a segment with the COE is the responsibility of the segment developer. Government
integrators perform integration of the system as a whole and interoperability testing.

2.1.5.3 Interoperability Levels

In the context of this document, interoperability refers to the ability of two systems to exchange data:

• with no loss of precision or other attributes,
• in an unambiguous manner,
• in a format understood by and native to both systems, and

Fundamental COE Concepts

DII COE I&RTS: Rev 3.0 July 1997 45

• in such a way that interpretation of the data is precisely the same.

There are two significant differences between interoperability and interfacing. The first is that with
interoperability the exchange of data is performed without the need to translate to an intermediate format,
such as a USMTF message format. This leads to the second difference in that interoperable systems will
produce exactly the same “answer” in the presence of identical data. Systems that are interfaced will not
necessarily do so because of the potential loss of precision or data in the data exchange.

The concept of interoperability is explored in more detail in a study sponsored by the C4I Surveillance and
Reconnaissance (C4ISR) Integration Task Force Integrated Architectures Panel. The draft document
proposes four levels21 of interoperability which are adopted by the I&RTS. The four proposed levels are as
follows, listed in decreasing order of interoperability:

Level A: Universal - Virtual C4I System. This level represents the ultimate goal of full
interoperability. Universal interoperability is characterized by the ability to globally share
integrated information in a distributed information space. Another way to view Universal
interoperability is as a way to globally share systems.

Level B: Advanced - Integrated Systems. The Advanced level of interoperability is
characterized by shared data between applications, including shared data displays, and information
exchange through a common data model. This level provides for sharing of information in a
distributed but localized environment and for sharing of applications.

Level C: Intermediate - Distributed Systems. This level is characterized by a client/server
environment with standardized interfaces and distributed computing services that allow for
exchange of heterogeneous data (e.g., maps with overlays, annotated images), and advanced
collaboration. This level of interoperability is achievable with implementation of “cut and paste”
between applications, through World-Wide-Web technology, and through basic use of DII COE
features.

Level D: Basic - Discrete Systems Interaction. A primitive level of interoperability
characterized by peer-to-peer connected systems that allows basic exchange of homogenous data
(e.g., email, formatted messages) and allows for basic collaboration. This level of interoperability
is achievable by interfacing techniques described above and by use of standard office automation
products that provide data import/export functions for handling data from another product.

2.1.5.4 Mapping Interoperability and Compliance Levels

Note that progressing from one level of interoperability to a higher one requires a deeper degree of
integration, more commonality in the infrastructure building blocks, and a greater ability to share data and
information. These are precisely the requirements for progressing to deeper levels of DII compliance, and
can be achieved through the use of COE/SHADE facilities. When two operators are using exactly the same
system, or two systems which are nearly identical, they achieve the highest possible degree of
interoperability. The more software reuse is achieved, the greater the degree of interoperability. Thus, there
is a direct relationship between integration, reuse, DII compliance levels, and interoperability.

Integration alone does not imply interoperability; it only provides a level of assurance that the system will
work as designed. However, when COE-based systems are integrated together, interoperability is achieved
as a byproduct because common software is used for common functions. The degree to which
interoperability is achievable is dependent upon the degree to which the two systems are DII-compliant.
Universal Interoperability can only be achieved when systems use exactly the same software to perform

21 The draft document also proposes a mapping between the I&RTS compliance levels and interoperability
levels. However, the mapping fails to properly account for integration when identical software is used for
common functions.

Fundamental COE Concepts

DII COE I&RTS: Rev 3.0 July 1997 46

identical functions and use the same database segments for required data elements. Implementation of
agreed-upon paper standards is not itself sufficient.

Table 2-1 shows a mapping between DII compliance levels and interoperability levels. The transition and
correspondence between levels is not sharp, as the table suggests because the purpose and focus are
different for the two different types of levels.

DII Compliance Levels Interoperability Levels
1. Standards Basic
2. Network Basic
3. Platform Basic, Intermediate
4. Bootstrap Basic, Intermediate
5. Minimal Basic, Intermediate
6. Intermediate Intermediate
7. Interoperable Intermediate, Advanced, Universal
8. Full Advanced, Universal

Table 2-1: Compliance and Interoperability Levels

2.1.6 Principles for Selecting COE Components

Selection of the specific software modules that comprise the COE determine which mission domain(s) can
be addressed by a particular COE reference implementation. But selection of COE components is not
arbitrary: it is driven by a number of important architectural and programmatic principles. First, there is a
determination of what functions the COE is required to perform, then there is a set of criteria for selecting
software components which perform the required functions. A function is part of the COE if it meets one or
more of the following criteria:

1. The function is part of the minimum software required to establish an operating environment context.
This is normally provided by COTS products and includes the operating system, windowing software,
security software, and networking software.

2. The function is required to establish basic data flow through the system. To be useful, a system must

have a means for communicating with the external world. To be efficient, consistent, and robust, a
system must also have standard techniques for managing data flow internal to the system.

3. The function is required to ensure interoperability. Standards alone cannot guarantee interoperability,

but using common software for common functions and using shared and universal database segments
with DOD 8320 standard data objects comes much closer. As an example from the GCCS mission
domain, a USMTF message parser is part of the COE because interoperability cannot be achieved if
two different message parsers implement a different set of assumptions about the USMTF message
specification or use a different specification revision.

4. The function is of such general utility that if rewritten it constitutes appreciable duplicative effort. This

includes printer services, an alerts service for disseminating alerts, and a desktop environment for
launching operator-initiated processes.

Subsections 2.1.1 and 2.1.2 detail the functions currently defined to be in the DII COE. The first three
criteria listed above are technical in nature because they dictate from an architectural perspective what
software must be contained in the COE for a given mission domain. The fourth criteria, however, is more
programmatic in nature because it is often a tradeoff between the cost of modifying a legacy system to
remove duplication versus the cost of maintaining duplicative code, the cost of potentially requiring
additional hardware resources because of duplication, and the cost of operator training when there are

Fundamental COE Concepts

DII COE I&RTS: Rev 3.0 July 1997 47

different ways to accomplish the same action. DII compliance requires that there be no duplication of
functions in the first three criteria but some flexibility is possible for the fourth.

There are two frequently voiced concerns about COE services:

1. if a module becomes part of the COE, it cannot be easily changed or customized; and
2. the larger the COE is, the more inflexible and the poorer the performance of the resulting system.

The first statement is partially true and is so by design. It is essential to perform careful configuration
management of COE components, and they must be changed only in a controlled way in response to
formally reported problems. Stability of the COE is crucial to the system, so modifications must be done
carefully, deliberately, and at a slower pace than changes in non-COE routines. But just because changes
are controlled does not mean that the COE routines cannot be customized. Ongoing work in the COE is to
devise and refine techniques to “open up the architecture” to allow applications to customize COE
components in ways that do not violate COE principles and do not adversely impact other developers using
COE services.

The second statement is a misunderstanding of the COE architecture and concept. Unlike many systems,
the COE is not designed as a single monolithic process, but is instead designed as a collection of relatively
small processes. While a small number of these are loaded into memory as background processes, most are
loaded into memory on demand in response to operator actions (e.g., edit a file, display a parts inventory)
and only for the amount of time required for them to perform their task. This approach offers considerable
flexibility because it limits the number of background processes required. Except for cases where segments
require adding new background processes, adding new segments does not adversely impact performance.
The price paid is a small amount of overhead required to load functions on demand, but this is generally
negligible because the overhead is small and comes usually in response to an operator request to bring up a
display that must respond only at human speeds.

A COE-component segment is not necessarily installed on every target platform or as part of every COE-
based system. A COE-component segment can be omitted from the system or installation if:

• Any remaining COE-component segments do not require the functionality provided by the segment.
For example, the COE provides a number of message parsers for processing military message formats.
But systems such as ECPN have no need to handle military message formats and therefore such parsers
need not be included in the ECPN system. However, in many cases there is no real advantage to
deleting a COE-component segment because it will not be activated unless required and the amount of
disk space taken up is small. Eliminating the function will increase the burden of configuration
management problems more than leaving the function in the system.

• The functionality provided by the segment is not required by any remaining COE-component segments.

Selection of certain functions within the COE automatically dictates the inclusion of segments on
which those functions depend. This is not the same as saying that the COE is not modular. On the
contrary, it is an observation that inclusion of a higher-level function requires inclusion of all lower-
level routines used to build the function. This is a direct consequence of modularity, not a
contravention.

• The functionality provided by the COE segment is not duplicated by another segment. A common

pitfall to avoid is omitting a COE component because its functionality is available through some other
means. The problem with this approach is that a common “look and feel” and consistent operation are
no longer preserved between applications, and interoperability may be reduced.

Omission of COE-component segments that are not required is done automatically by the COE installation
software.

Account Groups and Profiles

DII COE I&RTS: Rev 3.0 July 1997 48

2.2 Account Groups and Profiles

In a typical operating system, users are assigned individual login accounts. Configuration files are created
to establish user preferences and a runtime environment context. In the UNIX operating system,
configuration files (for example, .cshrc) establish the runtime environment context for the user. COTS
products such as CDE also have configuration files that contribute to the runtime environment context as
well. These configuration files must be set up and established for each user of the system. The COE
provides standard versions of the required “dot” files. These should be used when creating account groups
because they standardize the operation of the system across all account groups, and because the COE-
provided files demonstrate how to support dynamic profile switching.

An account group segment is a template used within the COE for setting up individual login accounts and a
required runtime environment context. Account groups contain template files for specifying items such as
the functions to be made available to operators and global default preferences such as color selections for
window borders.22 Account groups are described further in Chapter 5 of this document.

Account groups can also be used to perform a first-level division of operators according to how they will
use the system. This technique is used in the COE to identify at least five distinct account groups:

• Privileged Operator (e.g., root) Accounts,
• System Administrator Accounts,
• Security Administrator Accounts,
• Database Administrator Accounts, and
• Non-Privileged Operator Accounts.

Other account groups may exist for specialized system requirements, such as providing a character-based
interface, but all account groups follow the same rules. Within an account group, subsets of the available
functionality can be created. These subsets are called profiles. An operator may participate in multiple
account groups with multiple profiles, and can switch from one profile to another without the need to log
out and log in again. An operator may also select multiple actives profiles to provide an operational
environment from a collection of account groups. For example, assuming the operator has appropriate
permissions, an operator may combine a profile based on the System Administrator account group with a
profile based on a Database Administrator account group.

Figure 2-6 shows the hierarchical relationship among account groups, profiles, and individual users. It is
intended to convey several points.

• Multiple profiles may be assigned to an account group, but a particular profile may be assigned to only
one account group. Assuming the operator has proper permissions, multiple profiles may be selected at
one time to give the operator features from multiple account groups at the same time.

• Multiple operators may be assigned to the same profile. For example, operator Op4 and operator Opn

are shown assigned to the same profile within the Non-Privileged Operator account group.

• Operators may be assigned to multiple profiles either within the same account group, or across account

groups. Opn is assigned to three profiles within the Non-Privileged Operator account group. Op3 is
assigned to a profile in the System Admin, Security Admin, and Database Admin account groups.

• Not only can an operator be assigned to multiple profiles, but multiple profiles may be active at a time.

The operator may switch between profiles without the need to log in and out. (Optionally, a system can
be configured to permit a single profile at one time.)

22 The user may modify preferences, but the Account Group establishes the initial, default settings.

Account Groups and Profiles

DII COE I&RTS: Rev 3.0 July 1997 49

• The COE allows profiles to be locked. That is, if Op4 and Opn are assigned to the same set of profiles,
the system can be configured so that if Op4 is in a specific profile first, then Opn is locked out from
using that profile until Op4 is no longer using it.

System (GCCS,GCSS, ECPN, etc.)

System
Admin

Non-Privileged
Operator

Database
Admin

Security
Adminroot

Profiles Profiles Profiles Profiles

Op1 OpnOp2 Op3 Op4 ...

Account
Groups

Sets of
Profiles

Operators

Figure 2-6: Account Groups, Profiles, and Users

2.2.1 Privileged User Accounts

Most operating systems provide a privileged “super user” account. Both UNIX and Windows NT have the
concept of a privileged account. Privileged accounts are normally restricted to knowledgeable systems
administrators because serious damage can be done to the system if they are used improperly. Security
requirements also dictate careful control and auditing of actions performed when operating as a privileged
user.

The COE design philosophy is to not require the use of a privileged user account for normal operator
activities. Certain processes cannot be performed without superuser privileges, but such privileges should
be given to the process, not the user, and only for the period of time necessary to perform the required
action. Root-level access need not be provided to the user for such actions: indeed, it should not be
provided.

Normal operation does not require a command-line-level access, especially to root. Command-line access
for any COE segment is expressly prohibited unless the DISA DII COE Chief Engineer grants prior
approval. However, a privileged user account is preserved in the system for use by trusted processes, for
unusual system administration tasks or installations, and for abnormal situations where “all else fails.”

2.2.2 Security Administrator Accounts

Security in the COE is implemented through a collection of security services and trusted applications. One
such trusted application is the Security Administrator application that allows a Security Administrator to
monitor and manage security. Precise functionality of the Security Services provided is vendor-dependent
because vendors have taken different approaches. Security features in Windows NT and UNIX are
significantly different, but even within UNIX, security features vary considerably from one vendor to
another.

Account Groups and Profiles

DII COE I&RTS: Rev 3.0 July 1997 50

The Security Services are loaded as part of the COE kernel. (The precise sequence for loading security
software is vendor-dependent.) The Security Administrator application is designed to be made available to
only a restricted group of operators. Available functions include the following:

• Ability to create individual login accounts
• Ability to create defined operator profiles, including granting database privileges as established by the

Database Administrator (DBA)
• Ability to create/modify database user accounts
• Ability to assign read, write, and modify data permissions
• Ability to customize menus by operator profile.

2.2.3 System Administrator Accounts

The System Administrator Account Group is a specialized collection of functions that allow an operator to
perform routine maintenance operations. This software is designed to be made available to a restricted
group of operators. It is loaded as part of the COE kernel because it contains the software required to load
segments. Functionality provided includes:

• Ability to format floppy disks
• Ability to install and to remove segments
• Ability to set platform name and IP address
• Ability to install and configure printers
• Ability to create and to restore backup tapes
• Ability to shutdown and to reboot the system
• Ability to configure network host tables
• Ability to configure and manage the network.

2.2.4 Database Administrator Accounts

The Database Administrator Account Group is to be used by those individuals responsible for performing
routine database maintenance activities such as backups, archives, and reloads. The specific capabilities are
dependent upon which commercial relational database software is in use and upon tools provided with
these commercial products.

Functions included within this account group are:

• Ability to archive and restore database tables
• Ability to import and export database entries
• Ability to create/modify database user accounts
• Ability to checkpoint and journal database transactions.

Note: User account management is normally done as part of a Security
Administrator account. However, the COE provides the ability to
modify the database portion of already created user accounts via
the Database Administrator accounts as well. Only those user
account items related to database administration can be modified
by the database administrator.

2.2.5 Operator Accounts

Most operators will not require, nor will site administrators grant access to, capabilities described in the
previous subsections. Most system users will be performing mission-specific tasks such as creating and

Account Groups and Profiles

DII COE I&RTS: Rev 3.0 July 1997 51

disseminating Air Tasking Orders (ATOs), preparing briefing slides, performing ad hoc queries of the
database, participating in collaborative planning, etc. The precise features available depend upon which
mission-application segments have been loaded and the profile assigned to the operator.

2.2.6 Character-Based Interface Accounts

Certain legacy systems require the ability to provide a character-based interface to the user. This is
typically required for remote users where the communications bandwidth is too low to support a GUI-based
application or because the user’s hardware does not support graphics (e.g., VT100 terminals).

The COE provides a character-based account group for such situations. These may have profiles defined
just as with any other account group. When the user logs in, a menu of options, such as

0) Exit
1) AdHoc Query
2) TPFDD Edit

Enter Option:

is presented to the user.

Character-based account groups are restricted in the sense that a user account is either character-based or it
is not. If an operator has access to a terminal that supports a GUI interface and to another that does not, the
operator must have two separate login accounts: one which uses character-based profiles and one which
does not.

Site Configurations

DII COE I&RTS: Rev 3.0 July 1997 52

2.3 Site Configurations

Figure 2-7 is a simplified notional LAN diagram for a typical COE-based system. The architecture consists
of a 3-tier client/server environment incorporating data servers, application servers, and platforms
interconnected on a LAN/WAN. The division shown separates data (data servers), functions (application
servers), and presentation (platform). System components are interconnected on a LAN/WAN through
direct connection to a LAN, through subnets connected over routers, through dedicated lines, or via dial-up
through a communications server. Cryptologic equipment may be installed to secure communications over
non-secure lines as shown. Remotes with limited bandwidth will not generally have access to the complete
suite of mission applications available to local users.

Applications
Server

Remote
Lan

Backbone LAN

Data Server

Applications
Server

DISNSu
bn

et
 L

A
N

Comms
Server

Router

KG/MUX

Windows Workstations

Unix Workstations

Figure 2-7: DII Notional LAN Architecture

In a typical installation, there will be one or more database servers and several application servers. The
database server is the repository for all databases and may be replicated at strategic places in the LAN
architecture to improve performance and to balance loading. COE services ensure that replicated databases
stay synchronized.

A typical installation will often include other servers that are not shown in the diagram. A Web server
connected to the outside world through a firewall allows sites to take advantage of Web technologies for

Site Configurations

DII COE I&RTS: Rev 3.0 July 1997 53

collaborative planning purposes. As described in a later chapter, the COE also provides facilities that allow
developers to create applications that use the Web for accessing applications and data.

Network management is greatly simplified if a domain name server is created and if there is a server for
management of user accounts and profiles. Segment installation is simplified by designating servers to load
platforms across the LAN rather than individually from magnetic media. This approach also simplifies
software distribution because when software updates are received, they can be tested in isolation, then
loaded onto a segment server for distribution to affected platforms. Combined with configuration
definitions, the COE provides powerful tools for managing software installation and distribution.

The COE supports both “network-centric” and “platform-centric” LAN management. Network-centric
refers to the ability to centrally manage network resources (e.g., user accounts, profiles, software
installation). In keeping with COE principles, centralized management can be done from any platform
(subject to security considerations) with infrastructure services responsible for effecting the changes across
the network. Platform-centric refers to the ability to distribute network management. The choice of
centralized versus distributed is a preference which may vary across distributions or sites.

Installing COE-Based Systems

DII COE I&RTS: Rev 3.0 July 1997 54

2.4 Installing COE-Based Systems

Figure 2-8 is a notional depiction of the installation process. (It should not be interpreted too literally since
vendor-specific loading instructions may require slight alterations in the loading sequence shown.) First,
the operating system, windowing environment, and any necessary patches are loaded as per vendor
instructions. Then, the COE Security Administration software and System Administration software are
copied onto disk with the equivalent of a UNIX “tar” command. The segment installation tool is copied
onto disk as part of installing the System Administration software and installation of the System
Administration software is done in such a way as to also create a System Administrator operator account.
This completes installation of the COE kernel. Next, the operator logs in as a system administrator, invokes
the segment installation tool, and selects the remaining COE segments for installation. Finally, any
remaining mission-specific segments are selected and loaded.

This installation approach has several advantages. It greatly simplifies the installation process by handling
all vendor-unique issues first (e.g., loading the operating system and patches). It guarantees a standard,
known starting configuration for all platforms regardless of how they will be used. It allows all remaining
segments to be loaded in a standard way regardless of the hardware platform or mission application, thus
simplifying system administration. Through the COE, it allows segments to extend the base environment as
required as they are loaded.

Figure 2-8 describes the general flow for installing a system, which can be accomplished in either a “pull”
or a “push”23 mode. In pull mode, installation is done locally from the target platform. In push mode,
installation is performed remotely onto the target platform from a different platform.

Installation may be accomplished in several ways:

• directly from distribution media (e.g., tape, CDROM),
• locally from distribution media mounted on a different platform,
• across the network from a segment server, or
• through a Web browser interface from a centralized segment server.

The distribution media and servers may contain executables for multiple hardware platforms. The segment
installation tool ensures that only those executables which are compatible with the target platform (e.g.,
NT, Solaris, Digital Equipment Corporation [DEC]) are selectable and hence installable.

23 Installation in a “push” mode requires that the COE kernel already be installed on the target machine and
that the target machine already be accessible from the network.

Installing COE-Based Systems

DII COE I&RTS: Rev 3.0 July 1997 55

* Vendor-Specific Instructions

COE Kernel

Remaining System

Stop

Start

*Install OS

*Install Windowing Environment

*Install OS & Windows Patches

Install Security & System Admin S/W
(via “tar” command or equivalent)

Login as System Administrator

Install Remaining COE segments
(via Segment Installer tool)

Install Other Segments
(via Segment Installer tool by

selecting Configuration Definitions
or individual segments)

Figure 2-8: Installing a COE-Based System

Development Process Overview

DII COE I&RTS: Rev 3.0 July 1997 56

2.5 Supported Configurations

The DII COE is an open architecture and as such is not tied to a specific hardware platform. It uses POSIX-
compliant operating systems and industry standards such as X Windows, Motif, and NT. In actual practice,
POSIX compliance and industry standards have not progressed to the point where verification that software
works in one hardware/software configuration is a guarantee that it will work in another. COTS vendors do
not necessarily provide backwards compatibility with subsequent releases, and in fact much of the effort
consumed in porting the COE from one configuration to another is to account for lack of compatibility
between vendors or between vendor releases. Thus, what hardware/software configurations to support is
more an issue of testing and life-cycle maintenance than it is one of “openness” or software portability.

COE reference implementations exist for a number of platforms. The list of supported hardware and
software components is growing as the COE and COE-based systems evolve to meet operational
requirements. Appendix A lists the current DISA-supported COE configurations. It also describes a DISA
“self-certification” program that allows vendors or services to receive copies of the COE kernel in order to
port it to platforms or operating systems not currently supported by DISA. DISA will test the ported kernel
to ensure it meets COE requirements and will issue a certification for the specific platform. Responsibility
for supporting the ported COE on the new platform is the responsibility of the vendor/service that has
funded the effort.

Appendix A will be updated as required to reflect new hardware/software configurations. Note that not all
of the COTS products listed in Appendix A are part of the COE kernel and thus are not required for every
platform. Refer to the DISA DII COE Chief Engineer for requirements for other platform or COTS
software versions, or for an updated list of supported vendor products.

Specifying precise hardware requirements in terms of memory, disk space, etc. is a function of whether the
platform is a shared data server, an application server, or a client platform, and whether the platform is
standalone or on a network with other COE-based platforms. Consult the DISA DII COE Chief Engineer
for hardware configuration options.

3. Development Process Overview

This chapter describes the development process in more detail. A powerful feature of the overall
development process is the concept of “automated integration.” Automated integration means that
automated tools are used to combine and load segments, make environmental modifications requested by
segments, make newly loaded segments available to authorized users, and identify places where segments
conflict with each other. Traditional system integration then becomes primarily a task of loading and
testing segments, although traditional functional testing must still be performed to ensure interoperability
and performance of the resulting system. Automated integration has the advantage that traditional
integration tasks are pushed as far down to the developer level as possible, and then validated as system
integration is performed.

Prior to submitting a component to DISA, a developer must

• package the component as a segment,
• demonstrate DII compliance through tools and checklists,
• test the segment in isolation with the COE,
• provide required segment documentation, and
• demonstrate the segment operating within the COE.

The DISA DII COE Software Support Activity (SSA) enters the segment into the online library for
configuration management purposes and confirms DII compliance by running the same suite of tools as the
developer. The SSA then tests interaction between segments and the impact on performance, memory

Development Process Overview

DII COE I&RTS: Rev 3.0 July 1997 57

utilization, etc. Since segments typically can only interact through the COE, the task is greatly simplified
and the need for human intervention in the process is minimized.

An automated integration approach is a practical necessity. Not only do different services and agencies
contribute segments, but individual segments are created by a large body of different developers.
Traditional integration approaches rapidly break down with the need to communicate to such a large
number of people while the costs incurred to resolve inter-module conflicts at system integration time
become prohibitive.

This chapter begins with a consistent approach to version numbering, followed by a detailed look at the
development phases. The chapter ends with some special considerations for how to migrate legacy systems
rather than developing from scratch. Because of the special importance of the online library, Chapter 10 is
devoted to it and its features. For the present chapter, it is sufficient to note that there is a configuration
management repository for segments.

 Note: Integration and testing of a segment within the COE, and DII
compliance are the responsibility of the segment developer.
Government directed integrators verify DII compliance, integrate
the system as a whole, and perform interoperability testing.

3.1 Version Numbering

The COE concept requires the ability for segments to state dependencies upon or conflicts with other
segments. At least four types of segment dependencies/conflicts can exist.

1. One segment may require that another segment also be loaded in order to operate.
2. One segment may require another, but the dependency is version-specific.
3. One segment may have a conflict with another segment so that both cannot be present in the system at

the same time.
4. One segment may have a conflict with another, but the conflict may be version-specific.

A consistent approach to version numbering is thus a mandated feature of the COE standard so that the
COE tools can detect and enforce segment dependencies, and can detect and avoid segment conflicts.
Version numbers are applied to all segments and all segment patches.

COE-based systems consist of a collection of segments, each with its own individual version number.
When a version number is applied to a COE-based system, the version number refers to the entire system as
a whole, not the version for each individual mission application or segment, or for the COE version. While
this may seem confusing at first, it is a practical necessity and is consistent with commercial practice. For
example, one refers to the version of Microsoft Windows (analogous to the DII COE) as well as individual
applications like Word or Excel (analogous to mission applications like GCCS Status of Resources and
Training System [GSORTS] or to COTS products like Netscape). Microsoft packages several of their office
automation products into Microsoft Office (analogous to GCCS) and gives the collection a version number,
even though it is composed of individual products, each having its own version number. The Microsoft
Office package is advertised as requiring a specific version of Windows to operate.

DII compliance mandates adherence to the version numbering scheme outlined in this section. Version
numbers are frequently tied to the signature level required to authorize a product release. Hence they have
programmatic importance as well as technical importance for distinguishing between segment upgrades.

3.1.1 Segment Version Numbers

Segment version numbers consist of a sequence of 4 integers, separated by decimal points, in the form

Version Numbering

DII COE I&RTS: Rev 3.0 July 1997 58

a.b.c.d

where each of the integers has a specific meaning. The first integer is a major release number and indicates
a significant change in the architecture or operation of the segment. Compatibility libraries will be provided
if necessary to preserve backwards compatibility. The second integer indicates a minor release in which
new features are added to the segment, but the fundamental segment architecture remains unchanged. A
minor release may necessitate relinking to take advantage of updated API libraries, but APIs are preserved
at the source code level except possibly on a documented basis with the explicit approval of the DISA
CCB. The third integer is a maintenance release number. New features may be added to the segment, but
the emphasis is on optimizations, feature enhancements, or modifications to improve stability and usability.
APIs are preserved and do not generally require segments to recompile or relink during successive releases.
The fourth integer is a developer release number.

For COE segments, the first three integers are assigned by DISA. For mission-application segments in a
COE-based system such as GCCS, the program manager assigns the first three integers. In both cases, the
final integer is reserved for developers. The fourth integer is updated to keep track of successive releases
during the integration process.

Version number integers are always incremented, never decremented, to indicate later releases of a
segment. This scheme provides a readily apparent method of comparing successive releases of a segment.
For example, a segment with version number 2.1.6.1 is a newer version than 2.1.0.5. Moreover, according
to the scheme outlined, APIs are preserved. Segments using version 2.1.0.5 can usually be expected to
work without any modification when loaded on a system using the 2.1.6.1 version.

When specifying version dependencies, this scheme also allows segments to indicate the degree to which
they are version sensitive. For example, suppose Segment A requires use of Segment B. Segment A may
indicate that it requires Segment B, version 2.3 indicating that any maintenance release of version 2.3 (e.g.,
2.3.2.0, 2.3.1.2) is acceptable. The same approach works for specifying segment conflicts.

Note: It is a violation of the COE to fail to increment version numbers
between subsequent segment releases. This applies to all
segments whether they are COTS segments, COE-component
segments, or mission-application segments. This requirement to
update version numbers between subsequent releases is a matter
of good Configuration Management practice.

3.1.2 COTS Version Numbers

COTS products will typically already have version numbers assigned to them, but the convention used is
vendor-specific. This makes it difficult to make meaningful version comparisons in the same sense as in the
previous subsection. A further complication is that COTS products must often be configured before they
can be properly utilized in a COE-based system. For this reason, COTS segments are also assigned version
numbers.

A COTS version number consists of a primary and secondary version number separated by the ‘/’
character. The primary version number follows the same convention described in the previous subsection,
while the secondary version number is the version number assigned by the vendor and can be any
alphanumeric string. Comparisons and dependency specifications are always performed using only the
primary version number. Secondary version numbers should be specified because they may be used for
other purposes such as supporting automated license management.

For example, the DII COE requires an increase in the amount of shared memory configured in the vendor-
supplied Solaris 2.5 UNIX Operating System. A primary version number, such as 2.1.3.6, is assigned so

Version Numbering

DII COE I&RTS: Rev 3.0 July 1997 59

that the operating system is referred to as version 2.1.3.6/SOL-2.5. Similarly, the X11R5 version of an
X Windows server might have a version number assigned such as 2.3.0.4/X11R5.

COE-based systems are presently composed of segments contributed from ongoing programs that may
already have an established convention for version numbering. A secondary version number may also be
attached to such segments. As with COTS segments, only the primary version number is actually used
within the COE.

3.1.3 Patch Version Numbers

Patches24 are indicated by appending the letter ‘P’ and a single number to the primary version number. For
example, patch 12 to version 2.1.3.5 of a segment would be designated as version 2.1.3.5P12. Patch 4 to the
Solaris Operating System example in the previous subsection would be designated as 2.1.3.6P4/SOL-2.5.

3.1.4 COE Version Number

The DII COE itself is composed of a collection of segments. Each of these has its own version number, but
it is convenient to track the COE as a single entity. For this reason, DISA assigns a single version number25

to refer to a specific release of the collection of segments in the COE. Mission applications may thus state
dependencies on the COE as a whole rather than individual segments within the COE.

It is possible that some mission applications need to state a dependency on a particular segment within the
COE. This should normally not be required, but is permitted.

3.1.5 System Version Number

A COE-based system is comprised of COE segments, and mission-application segments. Each of these
segments will have their own individual version, but it is usually more convenient to the end user to view
the system as a whole rather than as a collection of individual pieces. Thus, it is advisable to assign a single
version number to the whole to refer to the system rather than confusing the end user with a list of
segments and their associated version numbers. Identification of the system version number is the
responsibility of the cognizant DOD program manager. It is also the responsibility of the cognizant DOD
program manager to track the track the segment versions that are to be associated with a particular system
release. The version number should be that identified in the main operator account group (e.g., GCCS,
ECPN, GCSS).

For example, suppose that the system GCCS, version 3.2, is to be comprised of the following segments or
groups of segments:

• DII COE, version 4.0
• JOPES, version 3.2.1
• GSORTS, version 5.6.3.2
• Scheduling and Movement (S&M), version 1.0.3

Then the cognizant DOD program manager should

1. enter “3.2.0.0” as the version number in the GCCS account group (see Chapter 5 for more information
on account groups and how to enter a version number); and

24 A patch in this context is the total replacement of one or more files, not the replacement of a subset of a
file or a section of memory. The files being replaced may be software or data.
25 The version number of the COE must not be confused with the version number for the I&RTS document.
The two are not related. One is the version number of a delivered software product while the other is the
version number of a specification document.

Version Numbering

DII COE I&RTS: Rev 3.0 July 1997 60

2. in accordance with good Configuration Management practices, maintain a list of the exact segments
and versions that comprise this GCCS system release.

Note: The COE provides an environment variable, COE_SYS_NAME,
that the account group must set to provide the system name. See
Chapter 5 for more details.

3.1.6 Configuration Definition Version Numbers

As described in Chapter 2, the COE provides configuration definitions to simplify management and
installation of COE-based systems. Version numbers should also be assigned to properly track changes to
configuration definitions. Refer to the appropriate programmer’s guide for details on assigning version
numbers to configuration definitions.

Process Flowchart

DII COE I&RTS: Rev 3.0 July 1997 61

3.2 Process Flowchart

Figure 3-1 is a representative flowchart of the development process, beginning with registering a segment
to be developed and ending with ultimately installing the segment at an operational site. The major
development phases are delineated by dashed lines in the figure and correspond to the subsections that
follow. This process flow is the same for all segments, including patch segments. As can be seen, the
process is indeed largely automated.

By necessity, the figure is abbreviated and does not show several key elements of the development process
such as error tracking and reporting, a configuration control board, DISA architecture groups, or
configuration management and quality assurance. Each of the elements is strongly implied by Figure 3-1,
but their description is beyond the scope of this document. Contact the DII COE Chief Engineer for more
information on related elements in the development process.

At several places in Figure 3-1, segments are added to the online library. Segments are compressed and
encrypted to reduce disk space and for added security. Segments are also encrypted and compressed when
they are transmitted electronically across the network. These actions are performed automatically and are
transparent to the user.

While electronic transmission of segments across the network is the preferred approach, it is not possible in
certain cases. It is not practical to transmit the operating system, X Windows, or Motif across the network
due to licensing restrictions and their size. Other segments, especially the data segments providing fill for
database segments, may be too large to send electronically or may have a security classification that
requires special handling and tracking. Figure 3-1 should be understood with this in mind. Electronic
transfer is performed when feasible, but an alternate route using tape or other media is used as well when
required.

Figure 3-1 also shows several places, especially in the Segment Submission phase, where a “Notify” action
occurs. This is an electronic notification of status to the segment developer, to the development community,
or to the user community. The subsections below describe notifications in more detail, but obviously
notifications of status are sent only to the cognizant parties, not necessarily to the entire community.
Notification is accomplished by email, WWW, newsgroups, or “paper” as appropriate.

The very nature of COE-based systems dictates that security measures be taken to prevent unauthorized
disclosure or access to sensitive information, including project status or system problem reports. For this
reason, access to software and project information is divided between Internet and SIPRNET with firewalls
to restrict access. This level of detail is not necessary for the overview presented in this chapter and has
been omitted from Figure 3-1.

Process Flowchart

DII COE I&RTS: Rev 3.0 July 1997 62

No

Online
Repository

Notify

No

Yes

Yes

Segment
Registration

Segment
Development

A

Pass

Fail

Register Segment

Start

Load & Config COE

Download Segments

Valid
COE?

Write & Unit
Test Code

Create Segment
Structures

Valid
Seg?

TestInstall
and

Compliance
Check

TestRemove

B

Fail

Pass

Segment
Submission

A

MakeInstall

System
Test

Test Seg APIs

mkSubmitTar

submit

C

B

Figure 3-1: Development Process Overview

Process Flowchart

DII COE I&RTS: Rev 3.0 July 1997 63

Operational
Site

Online
Repository

Online
Repository

Notify Accepted

Segment
Installation

Create Distrib
Media

Remote
Install

Stop

D

Segment
Accepted

Notify Received

Pass

Fail Notify
Rejected

Online
Repository

Notify Submitted

Fail
Notify
Rejected

Pass

Pass

Fail

C

Receive
Segment

Valid
Seg?

Submit to CM
Online Repository

Test Seg
In Isolation

Results?

Online
Repository

Notify Pass & Compliance Level

Test Advance

Create Config
Definition

System
Test

D

Assign Compliance Level

Figure 3-1: Development Process Overview (cont.)

Process Flowchart

DII COE I&RTS: Rev 3.0 July 1997 64

The remaining subsections discuss the process overview in detail. The flow is the same for software
segments and for database segments, but there are some additional nuances for database segments. Thus,
subsection 3.2.1 describes the process regardless of segment type, while subsection 3.2.2 has additional
information for database segments.

3.2.1 Processes Applicable to All Segments

Segment development is straightforward. It essentially requires registering the segment to make sure it will
not conflict with other segment developers, create the code, structure the product as a segment, and then
test it.

The process in Figure 3-1 is a generic flowchart for any type of segment. The I&RTS requires that all COE-
component segments be submitted to the DISA DII COE SSA for test and configuration management.
Mission-application segments must be submitted to the SSA identified by the cognizant DOD program
manager. DISA26 requires all mission-application segments for DISA Joint Interoperability and
Engineering Organization (JIEO) systems (e.g., GCCS, GCSS, ECPN) to be submitted to the same SSA as
for COE-component segments.

3.2.1.1 Segment Registration

Segment Registration is the entry point into the development process. Its purpose is to collect information
about the segment for publication in a segment catalog. Perhaps the most difficult part of maintaining a
software repository is simply knowing what capabilities exist. This is the purpose of maintaining a DII
segment catalog. The segment catalog is available online through a HyperText Markup Language (HTML)
browser and contains information provided by developers in a segment registration form. Keyword
searches can be performed on the catalog by developers to identify reusable segments or by operational
sites to find new mission applications.

The segment registration form includes, but is not limited to, the following information:

• segment name
• segment prefix
• segment directory name
• segment type (software, data, COE component, etc.)
• system resources (e.g., port assignments, UIDs requested, RPC addresses requested)
• estimated memory required by the segment
• estimated disk storage requirements
• list of boot and background processes (see Chapter 5)
• releasability restrictions (especially export restrictions)
• platform availability (PC only, Solaris only, etc.)
• short paragraph describing the segment features
• unclassified picture of the segment’s user interface (GIF, JPEG, or X11 Bitmap format).
• authorization keys (assigned by DISA)
• list of related segments
• list of keywords for use in catalog searches
• program management point of contact

26 Program managers who do not elect to use the DISA DII COE SSA for their mission applications must
coordinate with DISA to ensure that there are no conflicts between their mission-application segments and
COE-component segments. If the DII COE SSA is not used, it is the program manager’s responsibility to
ensure that there are no conflicts with mission applications from other program managers. Since DISA uses
a centralized SSA for all DISA JIEO systems, the DII COE SSA manages conflicts between programs (e.g.,
ECPN, GCSS, GCCS).

Process Flowchart

DII COE I&RTS: Rev 3.0 July 1997 65

• technical point of contact
• process point of contact

The segment name can be any character string that is unique among all segments. Segment names for
COTS products should usually not include the vendor’s name since this will make any segments that
depend upon the product vendor-specific. That is, a segment name such as

Company A DCE

is inappropriate because segments that are dependent upon DCE will have to have their dependencies
changed if a different vendor is chosen to supply DCE. Refer to Chapter 5 for specific rules regarding
selection of a segment name.

Each segment is assigned an identifier called a segment prefix. The segment prefix is a 1-6 alphanumeric
character string that is used to prevent naming conflicts between segments. Use of the segment prefix is
required in any situation where there is the possibility that two different segment developers might choose
the same name for a public symbol such as an environment variable, executable, API, or library. Two
segments may in fact have the same segment prefix as long as there is no possibility that public symbols
will conflict. This is realistic only if one developer creates both segments.

Segment directory names are often the same as the segment prefix, but they do not have to be. Segment
directory names can be any name that conforms to rules imposed by the target operating system, provided
they consist only of printable27 characters, begin with an alphanumeric character, does not end in a blank,
and are not already in use by another segment. It is recommended that directory names be limited to 14
characters to avoid porting problems. Refer to Chapter 5 for a specific discussion of how segment name,
segment prefix, and segment directory name are used to uniquely identify a segment.

Note: The COE stipulates the same requirements for choosing directory
names and filenames as are stipulated for segment directories,
except that uniqueness is required only of the segment directory
name.

At segment registration time, system resources must be identified. These include estimates of memory and
disk requirements. System resources that must be shared and coordinated among other segments must also
be identified. These include shared memory estimates, port assignments (e.g., /etc/services entries,
reserved UIDs), and any other resources that might cause conflicts between segments.

Some segments need access to certain restricted privileges provided by the COE. For example, some
segments need to have root privileges to be properly installed. Also, authorization must be granted by
DISA before a COE-component segment can be created. When such specialized requests are received and
authorization is given by DISA, the DII COE SSA will give the requesting segment developer one or more
authorization keys. Unless these keys are provided with the segment, the COE tools will refuse to honor
requests for restricted services.

Not all information provided at segment registration time is made available to the community at large. The
technical point of contact is available only to the DISA Engineering Office in the event that technical
questions or issues arise during segment integration. The process point of contact is the individual
authorized by the segment program manager to actually submit the segment or to receive status information
and notifications. The program management point of contact is the only individual authorized to commit
schedule or resources and is the only individual authorized to release information about the segment to the
community at large. The three points of contact are selected by the service/agency responsible for the

27 Some operating systems allow “.” to separate file extensions from filename. Some allow hyphens and
underscores. Thus, the COE requires only that the filename be printable, and not begin or end with a blank
character.

Process Flowchart

DII COE I&RTS: Rev 3.0 July 1997 66

segment. Services may elect to designate a single individual for all three points of contact, and may include
an alternate point of contact for each category.

Referring to Figure 3-1, two steps constitute the Segment Registration phase:

1. Register the segment. The segment registration form can be submitted in written form, through email,
or in HTML format. Appendix E contains more information on how to do this. Once the developer
submits the registration form, the information is entered into the online repository and confirmation is
sent to the process point of contact. Segment information is entered into the segment catalog with a
tentative release date for the segment. The segment prefix and directory requested will be granted
unless they have already been assigned to another developer’s segment.

2. Download segments required for development. When notification is received that segment registration

was successful, developers may download COE-component segments, developer toolkits, object code
libraries, and other segments required for software development. Appendix D provides more
information on how to download segments, tools, libraries, etc. It also provides information on how to
access and search the online segment catalog.

3.2.1.2 Segment Development

The COE approach is designed to be non-intrusive; it places minimal constraints on how developers build,
test, and manage software development. Developers are free to establish a software development
environment that is best suited for their project. The COE specifies no particular programming language
because it is only concerned with handling the resulting executable, not the process or language used to
create it. The COE requires only that deliveries be packaged as segments, that segments be validated before
submission, and that segments be tested in the COE prior to submission. Figure 3-1 assumes this degree of
freedom and omits steps such as design reviews and code walk-throughs that are an expected part of any
development effort.

1. Load and configure the COE. Most developers will find that the COE will meet their needs as is.
However, for some developers the COE kernel may need to be extended to increase shared memory
size, message queue sizes, add sockets, etc. Any changes to the downloaded COE must be carefully
recorded as environment extensions. It is the responsibility of the segment to request that the COE
installation tools make these extensions as the segment is installed. Doing such extensions other than
by using the installation tools is a violation of the COE.

2. Verify that the COE is valid. The tool VerifyCOE checks the integrity of the COE and should be run

any time a modification is made to the COE kernel to ensure that the resulting environment is still
COE-compatible. It also checks security-relevant features to be sure they have not been adversely
modified.

3. Write and unit-test code. Develop and test a baseline version of the new software segment as

independently of COE software as is possible, but within an environment as nearly identical to the
actual runtime environment as is possible. The purpose of this step is to resolve problems within the
segment and identify potential interface problems between the segment and the COE, especially the
runtime environment. The simplest approach is to launch the segment executables from a command-
line prompt within an xterm window (or equivalent) and look for software bugs or conflicts with the
COE. The focus of this step is to verify that the segment is correct internally.

4. Create segment structures. The focus of this step is to verify that the segment can interface externally

with the COE. Chapter 5 identifies information required to describe a segment through use of segment
descriptors. Decisions should be made at this point whether to package data and software together or as
separate segments, how best to include any required environment extensions, how to handle segment
installation and removal, which features should be icons versus menu entries, etc.

Process Flowchart

DII COE I&RTS: Rev 3.0 July 1997 67

5. Validate the segment. The tool VerifySeg must be run against all segments to confirm Runtime
Environment (Category 1) DII compliance. VerifySeg must be rerun when any file within the
segment that will be present at runtime is modified. This includes segment descriptor files, datafiles,
and executables. A segment cannot proceed any further in the process until VerifySeg confirms its
validity. COE tools used later in the process will reject a segment that has not passed VerifySeg.

6. Install and test the segment. The tool TestInstall allows a segment that is already present on the

disk to be installed exactly as if it had been loaded from distribution media at an operational site. When
installed successfully, it should be accessible from any operator login that has a profile that has been
set up to include the segment. At this stage, it should not be necessary to launch executables from a
command line or by any other interim technique. If the installation and test are not successful, the tool
TestRemove will undo the side effects of installing the segment, but will not delete the segment
from disk.

7. Evaluate the segment’s DII compliance level. As part of the segment test, the developer must evaluate

the segment’s compliance28 using the I&RTS and User Interface Specification checklists. The
checklists are to be submitted with the segment as part of the segment delivery.

8. Create an installation tape. The tool MakeInstall creates an installation tape than can then be

loaded through tools in the System Administration application just as a site operator will do.
Developers must include this test and load the segment on a pristine system to be sure that all
development environment dependencies have been removed. Failure to correctly perform this step
increases the probability that problems will be found when this step is attempted at the SSA.

9. Perform a system test. Whether the segment has been installed from tape, created by MakeInstall,

or created through the TestInstall tool, a system-level test should be performed to identify any
problems with the COE or other segments for which the developer is responsible.

10. Test segment APIs. This step applies only to those segments, typically COE-component segments,

which contain APIs that other segments will use. A test suite is required for all segments that submit
APIs.

3.2.1.3 Segment Submission

Segment submission to the SSA can be accomplished in two ways. MakeInstall can be run to create a tape
that is sent by mail or courier to the SSA. Multiple segments may be submitted on the same tape. This
approach is required for classified segments, and for segments that are “very large” and so would require a
lengthy transmission time if submitted electronically.

An alternative approach, implicit in Figure 3-1, is to submit the segment electronically. Electronic
submission of a segment is an automated process of compressing and encrypting the segment, then using
Web technology to transmit it to the SSA. The segment must be in the “pre-MakeInstall” format meaning
that alterations made during the installation process have not been performed. These alterations are usually
done by a PostInstall script (see Chapter 5) which may create data files, perform operations based on
hardware type, etc.

1. Compress and encrypt the segment. The tool mkSubmitTar performs this task on a “pre-
MakeInstall” format segment. The directory Integ, described in Chapter 5, must contain an annotated
description of output from VerifySeg. If a segment includes any public APIs, a test suite must be

28 The segment developer does not assign a compliance level to the segment. The SSA assigns a
compliance level, but the developer is required to do a self-evaluation and provide the results to the SSA.
This approach allows the developer to have a good idea of what the compliance level will be before the
segment is submitted, and it assists the SSA in assigning the compliance level. In effect, the SSA validates
the compliance tests performed by the developer.

Process Flowchart

DII COE I&RTS: Rev 3.0 July 1997 68

included to test each of them. The test must include an adequate range of test cases and the results
expected for each test. Details must be sufficient for use by competent testers who do not necessarily
already understand either the application or its individual APIs.

2. Submit the segment. The tool submit does this electronically across the Internet. Multiple segments

can be submitted at the same time.

3.2.1.4 Segment Integration

Segments received, whether by tape or electronically, are placed into the software repository, tested in
isolation, and then tested as part of the deliverable system. Validation is performed at each step using
exactly the same tool set that the developer used during the development phase. This approach allows many
integration responsibilities to be performed by the developer with only a need to validate that they were
performed correctly when a segment reaches the traditional system integration phase.

The process steps performed from this point on in Figure 3-1 are the responsibility of the SSA, not the
developer.29 They are described here because developers are still an active part of the process in isolating
and correcting problems.

1. Receive segments. Segments received electronically are placed in an isolated and safe disk directory.
Segments received via tape are placed there manually by a member of the SSA configuration
management team. The process point of contact is notified that the segment has been received and is in
process.

2. Validate the segment. VerifySeg is run against the segment submitted and the results are analyzed.

Discrepancies between the output of VerifySeg produced by the developer and that produced by the
integrator can occur for a number of harmless reasons. These are reconciled against the annotated
results provided by the developer when the segment was submitted. Segments that fail to pass
VerifySeg or the reconciliation process are rejected and the process point of contact is notified.

3. Submit segment to the online repository. Segments that have been validated by VerifySeg are

compressed, encrypted, and placed in the software repository. Notification that the segment is now in
the repository is sent to the process point of contact.

4. Test segment in isolation. The segment is loaded on a test system with the minimal segments required

for the operational system. If the test fails, the process point of contact is notified with a detailed
description of the problem. The segment remains in the repository but it is not available to anyone
except the developer.

5. Assign segment DII compliance level. Testing performed by the SSA includes a compliance check

using the I&RTS and User Interface Specification checklists. The checklists produced by the SSA are
compared against the checklists submitted by the developer (as described in subsection 3.2.1.2).
Discrepancies are evaluated to determine the reason, and the appropriate process point of contact is
notified of the compliance level assigned to the segment.

6. Advance segment to test level. Segments that work correctly in isolation are advanced to the next

testing level and are so noted in the repository. The process point of contact is notified and developers
needing the new segment are notified that a beta version is available.

7. Create Configuration Definitions. Most segments will not be loaded on every platform. One or more

configuration definitions that include the segment are established.

29 The DISA SSA performs these steps for COE-component segments and mission-application segments
within DISA COE-based systems. The SSA identified by the cognizant program manager performs them
for other mission-application segments.

Process Flowchart

DII COE I&RTS: Rev 3.0 July 1997 69

8. Perform system test. Configuration definitions including the segment are loaded onto platforms for

system testing. Those that fail are retained in the repository and a list of problems is sent to the process
point of contact. Depending upon the severity of the problems, the segment may be rejected,
provisionally made available for other developers to continue working, or accepted with known
problems.

9. Accept segment. Segments that are deemed to be sufficiently stable are advanced in the test process

and declared to be ready for delivery to operational sites. This is so noted in the repository and
notification of acceptance is sent to the process point of contact. The segment catalog is updated to
reflect that the segment is now available and interested parties (operational sites, program managers,
developers) are notified of the new capability.

3.2.1.5 Segment Installation

Segments can be distributed to sites either electronically or by other distribution media as appropriate. The
MakeInstall tool is used to extract segments from the repository and write them to tapes or other
media. The media is then manually delivered to the site. Once received at a site, the site administrator can
use the installation tools in the System Administration application to load segments directly onto individual
platforms. The installation tools also allow the site administrator to designate one or more platforms as
segment servers, load segments from electronic media onto the segment server disk(s), and then load
platforms across the site LAN from the segment servers. This greatly reduces installation time because
multiple platforms can be loaded simultaneously from disk rather than serially from much slower storage
media.

Installation can also be performed electronically through the RemoteInstall tool. The
RemoteInstall tool operates in either a “push” or a “pull” mode. In a push mode, the appropriate SSA
initiates electronic transfer of segments from the repository to operational sites. Segments can be installed
in a push mode to either a segment server or to an individual platform. In a pull mode, the remote site
initiates the segment transfer. This is done by selecting the RemoteInstall tool from the System
Administrator application. Operating in this mode, the RemoteInstall tool establishes a connection to
the repository, provides the operator with a list of segments that can be downloaded, and provides the
operator with the option of loading segments onto a segment server or installing them directly onto a
platform.

The discussion of installation given here is necessarily abbreviated. The capabilities provided by the COE
are much more powerful. Refer to the appropriate SDMS (Software Distribution Management System)
documentation for more information.

3.2.2 Processes Specific to Database Segments

When developing a database segment, the following additional issues pertaining to its database must also
be addressed. The discussion that follows specifies requirements of all COE-based database segments. The
DII COE SSA will ensure compliance for all database segments for which DISA is responsible. For all
other database segments, compliance assurance is the responsibility of the cognizant DOD SSA.

3.2.2.1 Segment Registration

Both the use and the source of data will be identified as part of the Segment Registration for any database
segment. The Segment Registration document will also include space requirements for the database within
the DBMS (including index space), database scalability (including rate of growth, if any), and application
usage. The application usage section must define access for each individual application at the data object
level in terms of objects accessed and the mode (read or read/write) of that access. Developers must

Process Flowchart

DII COE I&RTS: Rev 3.0 July 1997 70

identify any COTS tools they are using if those tools will require runtime components to be installed
outside the segment.

Where application segments that use databases are being developed separately from the database
segment(s) they access, the developers must define the application’s required access to database objects.
The database segment owner (development sponsor or DISA) controls an application’s access to database
objects and must approve or reject a segment’s proposed read/write access to the database. Database
segment owners are responsible for defining generic read access permissions for their databases. In either
case an application’s access requirements are the basis for defining its corresponding database roles.

DISA will review database segments’ contents for duplication of data objects and sources that already exist
in common databases or in other database segments. The space or storage requirements of the segment will
also be reviewed in the context of storage availability on DII Database Servers. DISA (or the cognizant
DOD program manager) may direct developers to use common or external data objects.

Registration of database segments requires additional information to that given in subsection 3.2.1.1:

Functional Area DOD functional area as defined in DODD 8320.1.
DBMS The DBMS that is used to manage the segment(s) being

registered.
Database/Data Store Name The identifying database name(s) and/or file name(s) for the

segment(s) being submitted, with version numbers assigned in
the field.

Using Applications/Systems The name and brief description of applications or systems
known to use the data segment(s) being registered.

Domain Description A brief description of the information domain of the
segment(s) being registered.

Fielded Sites A general description of the DOD locations where the data
segment(s) will be used.

The additional information listed here must be updated when the database segment is actually submitted. It
is captured and made available to authorized users for purposes of potential reuse of the data assets
provided in the segment.

3.2.2.2 Segment Development

The segmentation process for database segments begins with identifying the database segments that will be
established to create the database. It is possible that the database can be implemented as a single segment or
multiple segments.

A database segment is the building block that provides specific data services for one or more DII COE
applications. If a database is only supporting one application and has no domain tables (e.g. Country
Codes), then it may make sense to implement a single application-unique database segment. However, if
the database supports more than one application, then the developer should determine whether the database
should be implemented with one or more shared database segments. The advantage of multiple shared
database segments is that the segments are more granular and a shared data server can be configured to
support the data requirements of mission applications without having to carry superfluous data services. A
disadvantage of multiple shared database segments is the management of database object dependencies that
can be created by such things as foreign key constraints. These inter-segment dependencies complicate the
management of segment installation and, moreover, the removal of segments.

Another consideration for developers is to determine which parts of a database are shared between
applications and which parts are unique to a given application. From a configuration management point of
view, one segmentation strategy would be to place the application-unique database components into a
separate segment.

Process Flowchart

DII COE I&RTS: Rev 3.0 July 1997 71

Additionally, determining the contents of a database segment requires several factors to be considered:

• Which tables can be conveniently managed as a unit,
• Which tables are defined to support a functional area,
• What are the sources of data, and
• What are the database object dependencies.

The structure of the database or databases in the segment must be fully described during this phase. This
descriptive information includes tables, elements, indexes, privileges, triggers, etc. The database
description will be maintained in the ReleaseNotes for the database segment. The storage structure of
the segment must also be defined.

Developers should examine the SHADE repository of universal and shared database segments for potential
reuse. For example, if the SHADE repository contains a universal database segment for country codes, then
it may be possible to remove the country-code table from the proposed segment. It is more than likely that
the physical schemas will not match but it is possible that the proposed segment could implement a
database view to the country-code table in the universal segment.

Any changes to the DISA-defined configuration of the COTS DBMS must be requested from DISA as
COE environment extensions. The DISA DII COE Chief Engineer will review such requests to ensure they
do not conflict with the needs of other segments, and will be responsible for changing the COTS segments.
DISA’s defined DBMS configurations are available from the COE Online Services.

A test database is required for all database segments. The purpose of the test database is to allow the SSA
to test the segment’s operations and to test the applications that access the segment’s data. The test database
must be unclassified. If the segment’s data fill is classified, but the schema is not, a separate data segment
must be provided for the classified fill.

3.2.2.3 Segment Submission

Developers must remove all data files from the DBS_files directory before submitting the database
segment. The files in this subdirectory are the ones owned by the DBMS and used to hold the online
database. They are created on a database server during PostInstall, and should not be included with
the segment. See Chapter 5 for an explanation of the DBS_files directory and for more information on
the database segment’s structure.

Database segments submitted to the DII COE SSA will be included in the SHADE repository.

3.2.2.4 Segment Integration

Developer testing of all applications that access a Database Segment’s data structures is performed during
this phase to ensure proper functioning and performance of new and existing applications. Following this, a
segment installation test will be conducted.

Testing a database segment must include tests of all applications that access the objects in that segment,
whether or not they were provided by the database segment’s developers. The purpose of this testing is to
identify application problems so their respective developers can initiate corrective action.

3.2.2.5 Segment Installation

Database segments are installed only on a database server. Where data fill is a part of a database segment,
its installation via RemoteInstall may not be supported because of the potential need to transmit a
large quantity of data electronically. Network transfer of large data sets can take a long time. Since the

Process Flowchart

DII COE I&RTS: Rev 3.0 July 1997 72

DBMS must be operating in its maintenance mode during a database segment install, users could be denied
database services for a significant, possibly intolerable, period of time.

DII COE/SHADE Database Concepts

DII COE I&RTS: Rev 3.0 July 1997 73

3.3 Migration Considerations

The preceding section dealt with the development process as if it represents new development. However, much of
the present and planned functionality is derived from existing legacy systems, not new development, and it simply is
not feasible in many cases to totally abandon a system and start over. A migration strategy must be implemented
which allows legacy systems to take advantage of COE benefits. The strategy must simultaneously balance full DII
compliance versus implementation cost, rapid system deployment versus risk to system stability, porting
functionality versus new development, and preservation of capabilities users already have versus duplication.

With the exception of subsection 3.2.1.2, the process outlined in the preceding section applies directly to both new
development and migration strategies, or requires minimal customization. However, subsection 3.2.1.2, which
describes the segment development phase, requires a few additional special considerations.

It is helpful to remember that the overarching approach is to build on top of the DII COE, not to decompose the
COE into constituent parts to build on top of some other architecture or body of software. In other words, the
approach is to integrate components from legacy systems into the COE, not to integrate the COE into an existing
legacy system. This perspective is fundamental to successful integration.

The key to reusing the COE and to achieving DII compliance is the concept of the public API. APIs represent the
gateway through which segments may gain access to COE services, including the kernel. Software developers and
integrators must use public APIs and avoid dependence on a particular version of the COE since the public APIs will
be preserved as the COE evolves. Applications must migrate away from private or legacy APIs since they will not
necessarily be supported in subsequent COE releases.

Given this perspective of integrating components from a legacy system into the COE, the following considerations
will lead to a successful migration strategy. The recommendations are not listed in any particular order or priority
because what will be an effective sequence will vary from one legacy system to another.

• Create a requirements matrix. The matrix should identify requirements already met by the COE, requirements
that the COE meets but which require modification, and unique requirements. This matrix represents the
development work that must be performed. Modifying COE functionality requires negotiation with the DISA
DII COE Chief Engineer and approval by the DISA COE CCB. Mission-unique requirements may be met by
porting legacy components, by other mission segments external to the COE, or by COTS products.

• Identify anticipated source code changes. Most segments should be able to achieve Level 5 compliance without

any source code changes. This is because most of the Level 5 requirements are simply good, standard
programming practices (e.g., not hardcoding absolute pathnames in the application). However, above Level 5,
source code changes are likely to be required to migrate the legacy system to use COE services. Commercial
products are available which will analyze source code and identify API usage and hence help pinpoint areas
where changes may be required.

• Identify public COE APIs to be used. The API analysis from the preceding recommendation can be useful in

determining what APIs from the COE are going to be needed. An initial step in migrating to use COE services
might be to create an interim layer that maps legacy APIs to their corresponding COE APIs. This will often help
in rapidly achieving Level 6 (Intermediate DII Compliance) from Level 5 (Minimal DII Compliance).

• Identify areas where the proposed application overlaps the COE. Runtime compliance at or above Level 6 is

largely a process of removing duplication.

• Identify support services within the legacy system. These support services are candidates for replacement by

COE services and should be partitioned away from the mission application through modularization of the code.

• Develop a schedule and strategy for achieving Level 8 compliance (Full DII Compliance Level). Intermediate

steps to achieve a lower level of compliance are very useful as progress milestones in the migration strategy.

DII COE/SHADE Database Concepts

DII COE I&RTS: Rev 3.0 July 199774

Segments must demonstrate Level 7 compliance (Interoperable Compliance) prior to acceptance as an official
DISA fieldable product and must show migration to Full DII Compliance unless the segment will be phased out.

• Determine how the segment will be integrated with the Executive Manager. The COE installation tools provide
“hooks” to allow segment functions to be accessed from either an application icon available from the desktop or
as options in a pull-down menu within an application. The User Interface Specification contains guidelines for
which approach is most appropriate for segment features. The Executive Manager uses a commercial CDE
product, so consulting CDE documentation will be very useful.

• Determine which account group(s) the segment will belong to. Chapter 2 explains that account groups permit

dividing users into groups based on how they will use the system (system administration, database
administration, etc.). This is important because it is the account group that determines the runtime environment
for a segment. The COE allows a segment to belong to multiple account groups because some segments, such as
a Printer segment, are of general utility while others, such as a propagation-loss tactical decision aid, are much
more specific to a mission-application domain.

• Determine the required runtime environment extensions. The COE enforces the principle that segments may

extend a base environment according to a set of well-defined rules, but may not alter the environment in a way
that adversely impacts other segments. Chapter 5 elaborates on the rules for how segments may extend the
environment. The important points here are that segments must separate the runtime environment from software
development preferences, and identifying changes required in the runtime environment is the key to achieving
Level 3 (Platform Compliance) compliance.

• Negotiate new APIs or modifications with the DISA Engineering Office. Identifying functionality missing from

the COE or required modifications can often serve to drive COE development. Modification of APIs and the
introduction of new APIs requires approval by the DISA DII COE Chief Engineer and by the DISA COE CCB.

• Use only public APIs. Use of private APIs or APIs from a legacy system may be expedient for an interim

period. However, use of such APIs will limit compliance to Level 6 or 7, or lower, and the risks associated with
the fact that such APIs are not supported and may vanish in subsequent releases of the COE are the
responsibility of sponsors of such a legacy system.

4. DII COE/SHADE Database Concepts

SHADE uses database segmentation and Shared Data Servers (SDS) as the primary underlying mechanisms to
enable data sharing. Packaging data into database segments and installing them on an SDS allows multiple
organizations and functions to share single copies of a DBMS (i.e., one per physical data server) in the same way
that packaging applications into segments allows software systems for multiple functions to coexist on the same
platform. At the same time, identifying database segments as Shared or Universal allows explicit sharing of data
among software systems, applications, and their user communities. Database segments provide a convenient way for
organizations to load SDSs with the data structures and values that users require. This packaging technique will also
make it easier for data administrators to collect required metadata on implemented structures and to physically
reorganize (multi-segment) databases in ways conducive to distribution and replication.

The function of a COE SHADE SDS together with the databases it manages is to provide information to users
through applications that access the databases, and to support system and database administrators’ maintenance
functions. The operations of an SDS involve the database server, the databases/database segments managed by it,
and the applications that access one or more databases. The discussion that follows addresses the operational roles of
each.

An SDS provides data management services to its client applications. In order to be useable, it must constitute a
stable, reliable operating environment that developers can design for. Database services include tools to support the
management, by a site administrator, of users’ discretionary access to databases based on the applications they are
permitted to use. This is governed by the following principles.

DII COE/SHADE Database Concepts

DII COE I&RTS: Rev 3.0 July 1997 75

• Users will not need access to all applications.
• Applications will have multiple levels of database access that can be granted to users.
• When access to an application is granted to or revoked from a user, the corresponding database permissions are

also granted or revoked.

SHADE database services within the COE are implemented as a federation of application-owned (Unique) and
common (Shared and Universal) database segments. Application segment developers control the data and structures
that are specific to their Unique segments and can change the data or their structure when necessary. The
configuration of Shared and Universal database segments is controlled by the appropriate joint configuration
management authority. All these databases reside on the SDS that provides services to the applications, acting as
database clients, within the network. The databases within a particular SDS are isolated from each other, physically
and logically, by being placed in separate storage areas and by being owned by different DBMS accounts. Database
developers sustain this isolation by defining one or more database accounts to own their data objects and by
allocating those objects to the owner accounts they have created.

This configuration, using a disk controller and drive analogy, is shown in Figure 4-2. The core database
configuration, containing the DBMS Data Dictionary and associated system information, is part of the COE and is
represented by the System Database. All other databases, whether provided by DISA, a developer, or some other
agency, are included as ‘component’ databases under the management of the SDS. The set of component databases
available from a particular SDS is determined by the set of applications that server’s database is expected to support.

From the DBMS perspective, all databases are shared assets, whether they are common or not, because they are
accessed by multiple concurrent users. They are also dynamic because their data changes even if their structure
remains static. Databases may be interdependent. Databases depend on the COTS DBMS service and are built
within its constraints. Databases can be accessed by applications other than those written by the database developer.
While database applications today are usually written by the database’s developers, this will be less true in the future
as SHADE data object reuse increases.

Shared Data Server (SDS)

System
Database

F
A
P
E
S

G
S
O
R
T
S

S
&
M

M
E
P
E
S

Component
Databases

Figure 4-2: Shared Data Server Architecture

Applications that use databases to manage their information are the interface between users and the data. Some
applications use their databases interactively, in a transaction-processing mode, to perform the work for which they
have been designed. Others have a single process that writes data for many readers. Some pull data from remote
sources directly to replace existing data. They then allow read-only access to that remotely provided information.

DII COE/SHADE Database Concepts

DII COE I&RTS: Rev 3.0 July 199776

Users connect to the SDS through the client applications, possibly in multiple sessions. Each session must behave as
if it is isolated from the rest of the system and knows of no data other than that belonging to the application it is
executing.

Note: The DII COE requires that database transactions implement strict two-
phase locking. Two-phase locking and two-phase commit are not
synonymous. Two-phase locking is implemented by the DBMS to
sustain the atomic properties of transactions. Two-phase commit is
implemented in a distributed DBMS to ensure consistent updates of
replicated data records. It is used when a distributed database requires
synchronous updates. For example, GCCS uses an asynchronous
distributed transaction model and therefore cannot use two-phase
commit.

Constraints on Database Developers

DII COE I&RTS: Rev 3.0 July 1997 77

4.1 Constraints on Database Developers

The developers of databases and applications accessing databases must conform to the COE database server
environment so they do not bypass its features. Conformance also limits the likelihood of data corruption. The
combination of the SDS configuration and the developers’ implementations must ensure two things. First, each
connection of a user to a database through an application must function in the proper context for that application and
database. Second, each user’s connection to a database must not interfere with any other user’s connection to the
same or any other database.

The development and integration standards for COE databases support an evolving configuration of database
services. Using GCCS as an example, in version 0 each GCCS application had its own database and database
management system. Commencing with GCCS 1.1, the separate database servers were replaced by a single-server
running a single-instance of the database management system. Each application retained ownership of its database
within that instance, but shared the DBMS service with the other applications’ databases. The next step was to have
a database segment on the server that is accessible from multiple application databases. For example, suppose two
application databases need a country-code table. In the prior step, each database would have its own version of the
country-code table, which might be identical. In this step, a single copy of the country-code database segment would
be on the SDS and accessed by both applications. Thus, the SDS provides shared, concurrent access to multiple
databases and database segments with varying degrees of autonomy. COE-based systems are to follow the same
approach as that pioneered by GCCS.

The principal reason for this change in GCCS was to meet DOD’s information availability requirements. The
multiple instance configuration split information among data applications that were uniquely configured to support
the needs of specific mission applications. The single-server, single-instance data management service provided by
GCCS conserves system resources by not requiring multiple copies of the DBMS to be executing and eases system
management by providing a single point-of-entry for database management services. That single point of entry also
simplifies application development. However, that is not the only method for implementing SHADE data services.
COE systems may implement a configuration that distributes the database over a LAN/WAN for survivability or to
distribute the processing load. Multiple DBMS instances may be used for data isolation or to separate different user
communities on the same server. Regardless of the specific database server configuration, SHADE requires that
information be treated as a DOD corporate resource, not something owned by applications. The benefits that come
with the central service does limit the freedom of developers by requiring that they implement databases compatible
with the larger multi-database environment. In addition, the increased complexity of a multi-database system could
overburden the operational sites’ system and database administrators unless it is implemented consistently. This
again limits developers by constraining their databases to function within a consistent administrative framework.

The principal consideration for developers is that their applications and databases no longer have exclusive use of
the database management system. Instead of being an application-specific data management tool, the DBMS is a
central service that supports all applications’ databases. As a result, developers cannot customize or tune the DBMS
to the particular behavior of any single application. Any such modifications to the DBMS will inevitably affect other
applications and databases. Similarly, the individual component databases are no longer the sole occupants of the
DBMS. Developers must implement their applications, constraints, and component databases so that they do not
interfere with others sharing the same DBMS. Further, because there are multiple databases in the DBMS,
applications can connect improperly to other databases. Developers must ensure that their applications connect only
to the database they intended to use. They must also design their databases to maintain their own integrity without
reference to external applications.

In order for component databases to plug into and play properly on an SDS, they must conform to the standards
defined herein. The objective is to support the independent development of maintainable databases that will function
reliably within the larger multi-database system. This release of the I&RTS has extended the COE tool set to include
tools that deal specifically with integration problems related to multi-database environments.

Developers must implement their databases such that the operational sites’ administrators can manage the collection
of databases. If system and database administrators are required to manage multiple databases, each with its own
integrity rules and access methods, their jobs quickly become impossible.

Database Integration Requirements

DII COE I&RTS: Rev 3.0 July 199778

4.2 Database Integration Requirements

The SHADE Database Server is the COE component that provides shared data management within COE-based
systems. Regardless of the COTS DBMS used to provide database services, its functions within the system remain
the same:

• Support independent, evolutionary implementation of databases and applications accessing databases

• Manage concurrent access to multiple, independent, and autonomous databases

• Maintain integrity of data stored in the DBMS Server

• Provide discretionary access to multiple databases

• Sustain client/server connections independent of the client application’s and database server’s hosts

• Support distribution of databases across multiple hosts with replicated data and with distributed updates

• Provide maintainability of users’ access rights and permissions

• Support backup and recovery of data in the databases.

In addition, database services within the COE are not restricted to a single vendor’s DBMS. As a result, developers
must implement their databases such that dependence on any particular DBMS vendor’s product is limited. The
discussion that follows provides more detail on each of these general requirements.

4.2.1 Evolutionary Implementation

The goal of evolutionary implementation is to be able to incrementally develop, field, and improve software and
information services. This “build a little, test a little” philosophy applies to databases as well as applications. In the
database context, the objective is to field the latest and best information structures and contents, and to progressively
reduce the number of structural variants representing the same entities and relationships. Databases and applications
should be able to evolve independently in principle, but in practice this is tempered by the dependence of
applications on the database’s structure. In addition, component databases are dependent on some unique DBMS
features for their implementation.

Database developers can still support evolutionary implementation by maintaining the modularity of their
component databases. To achieve this goal, component databases must first coexist within the server without
corrupting each other’s data. This does not simply require isolating databases from each other; it requires that all
actions across database boundaries be intentional and documented. The COE/SHADE architecture requires that
segments not modify other segments. The same applies to component databases modifying or extending other
database segments. When a database segment does have a dependency on some other component database, that
dependency will be kept in a separate segment.

Component databases are dependent on the DBMS used for the SDS. The specific commands used for their
implementation within the DBMS and the environment it provides are both defined by the DBMS vendor. Database
developers must be careful in their use of vendor-specific features so they do not create unintended dependencies on
specific database management systems or, more importantly, particular versions of the DBMS, while still taking
advantage of the database server’s capabilities. To accomplish this, developers shall separate DBMS-specific code
from that which is transportable. See Appendix F of this document for information on vendor products. Additional
information and guidance on SHADE-specific issues can be found in the SHADE Architecture and related
documents.

Database Integration Requirements

DII COE I&RTS: Rev 3.0 July 1997 79

The same constraints on databases also apply to applications accessing those databases. Application developers must
ensure that applications connect through regular, documented APIs and shall not assume the use of particular DBMS
versions. This does not prohibit developers from designing to the current version of a COE-compliant DBMS, using
vendor-supplied tools that are part of the COE, or from accessing objects in other database segments. It prohibits
developers from embedding DBMS vendor’s runtime libraries or environment variables in the application segment.
For example, developers should not provide their own coraenv script in the application segment because it creates
an implicit version dependency on that version of the Oracle RDBMS. In addition, this example interferes with the
Database Administrator’s (DBA) management functions.

The key to managing the evolution of component databases and the applications that use them is documenting their
interrelationships. Applications’ dependencies on databases shall be documented so that database-segment version
changes can be tested with the applications. The component database’s dependency on the DBMS will also be
documented for the same reason. If developers use DBMS vendor-supplied tools to implement applications, the
dependency on the tools will be documented. When applications or component databases access data objects
belonging to other component databases, the dependency among the databases shall be documented as well. These
dependencies are documented under the Database and Requires descriptors of the segment’s SegInfo file.
See Chapter 5 for more information.

When one developer is responsible for both applications and databases, the management of such interdependencies
is simplified. Database segments and associated application segments will usually be delivered at the same time and
installed together. When separate developers are responsible for databases and applications, however, careful
coordination between the two developers will be required. As the database federation evolves, it is likely that
component database segments will be upgraded before applications that access them. When applications are affected
by component database segment modifications, legacy views may be provided as directed by the cognizant authority
for the segment. Such views will be read-only, but can allow query tools to continue to function until they are
modified to work with the re-engineered database.

4.2.2 Database Segmentation

Another issue with respect to modularity is that of subdividing a database into coherent segments. If a database is
only supporting one application, then it might make sense to implement a single Unique database segment.
However, if the database supports more than one application then the developer should determine if the database
should be developed with one or more Shared database segments and Unique segments. The advantage of multiple
shared database segments is that the segments are more granular and an SDS can be configured to support the data
requirements of mission applications without having to carry superfluous data services. A disadvantage of multiple
shared database segments is the management of database object dependencies such as foreign key constraints. These
inter-segment dependencies complicate the installation and deinstallation of database segments.

 In the course of determining which data objects will be grouped into a database segment, developers need to
consider several factors:

• Data Objects that can be conveniently managed as a unit,
• Data Objects that are needed together to support a functional area,
• Common sources or providers of data,
• Data object interdependencies, and
• Frequency of update.

Modularity can be enhanced by allocating data objects among Shared and Unique database segments. A Shared
database segment contains data objects that are intended for use by multiple applications or other data stores. A
Unique segment’s objects are specific to the applications contained in a specific software segment. Additionally, the
developer should investigate the SHADE repository for existing Universal and Shared database segments for
potential reuse. For example, if the SHADE repository contains a Universal database segment for country codes,
then it may be possible to remove the table(s) defining country codes from the proposed segment and use the
existing country code database segment. In the case of a legacy system, a view may need to be created to the Shared
or Universal database segment until the application can be modified. Divide the remaining tables in the database

Database Integration Requirements

DII COE I&RTS: Rev 3.0 July 199780

along functional boundaries to form segment groupings (i.e., neither unique nor replaceable by an existing database
segment). Potentially Shared database segments should be registered in the SHADE repository. The outcome of this
process should be a set of one or more database segments with their corresponding groups of identified database
objects. Specific guidelines for creating database objects are found in subsection 4.3.

The database objects in a Shared database segment are common to many applications residing in different segments.
Shared database segments prevent duplication of widely used or required database objects, such as reference tables,
and procedures, such as validation or conversion routines. They also support interoperability at the data level by
standardizing key cross-reference fields. The objects in a Shared database segment must be accessible to many
applications, regardless of which database they reside in, and may support other database segments that are then
dependent on that Shared database segment. Such segments will often provide generic read-only or read/write
database roles (see subsection 4.3.5) to support their use by other segments. In this context, the only distinction
between a Shared and a Universal segment is the organizational level at which their contents are managed.

The database objects in a Unique database segment are not open to, nor intended to support, multiple software or
data store segments, but are used only by a particular software segment. This software segment owns, controls, and
depends on its own database segment, and no other software segment does. Thus, a Unique database segment
usually contains the database tables, triggers, and procedures that support specific, intrinsic functions of a software
segment; it has no data of value to any other segments.

Dividing data in this manner simplifies the system integration effort. When a change is made to a Shared database
segment, all developers of applications that access that segment must be notified and must be given time to adjust
their application segments. Otherwise the Shared database segment must incorporate legacy views to support the
applications until they can be modified. Changes to Unique database segments, however, require no coordination as
only the applications in the dependent segment are affected. In addition, legacy views are seldom required as the
applications and their database segment, both usually maintained by the same developer, will be modified at the
same time.

Developers should also consider the frequency of updates against data tables when defining their database segments.
Separating static reference tables from those that are dynamic allows more flexible system and database
administration. The separation may be accomplished by placing the static objects in their own database segment, or
by creating static objects in a separate storage area (e.g. an Oracle tablespace for read-only tables) within the
segment. The appropriate method will depend on the target DBMS. See subsection 4.3.2 for storage allocation
methods and Appendix F for implementation information specific to each vendor’s product.

4.2.3 Managing Multiple Databases

The COE database architecture is a federation of databases with varying degrees of autonomy. Federated means that
the component databases share DBMS resources. They process data cooperatively but are not part of an overall
schema. They may use Shared and Universal database segments. In some cases they may also share or exchange
data. Autonomous means that each database remains an independent entity. Individual databases may be modified or
upgraded without reference to others (e.g., segments may be added or deleted to support the functionality of the
applications that use the database). Individual database segments within a database may not be changed without
reference to others unless they are unique segments. Developers are also responsible for maintaining their own data
access and update rules.

The federated architecture provides the same modularity within the SDS that mission-application segmentation does
for the user interface. The set of databases available from any particular SDS is tailored to the information needs of
the individuals using that server. Database segments that are not needed can be omitted. This may appear to conflict
with SHADE’s stated goals of improving interoperability through data standardization. In fact, it supports those
goals by separating the data that can be shared from those that should not be. As a result, developers and data
stewards can concentrate their efforts on standardizing those data where there is the most benefit in terms of quality
and interoperability.

Database Integration Requirements

DII COE I&RTS: Rev 3.0 July 1997 81

In order for this to work, each component database must be implemented in a self-contained manner. This is not to
say that a database supporting a set of applications should be self-sufficient. One goal of SHADE’s modular
database implementation is to limit the redundancy of information among component databases. Developers should
not incorporate information in component databases that is already available from other, existing database segments.
Instead, being self-contained means that each component database must contain all information needed to manage
its objects and maintain their integrity. The issues involved in implementing this are discussed in the next
subsection.

4.2.4 Data Integrity

Data integrity addresses the protection of the information stored within a database management system. There are
three general circumstances that must be addressed.

1. The prevention of accidental entry of invalid data.
2. The security of the database from malicious use.
3. The protection of the database from hardware and software failures that may corrupt data.

Implementation of appropriate data integrity measures is the responsibility of the database developers using the
features of the DBMS.

The SDS is responsible for preserving the integrity of each component database and for preventing connections
between an application and data that belong to any other application. COE-based systems may well be secure
systems that contain and process classified data. The database management component must conform to the security
policies and practices of the overall program. Otherwise, the SDS supports the data access restrictions and integrity
assumptions incorporated in each database.

The SDS provides the basic functionality expected of a DBMS. It ensures the recoverability of failed transactions or
of a crashed system. The atomicity, concurrency, isolation, and durability of database transactions are the
responsibility of the applications accessing the server. However, supporting these transaction properties is the
server’s responsibility. Developers must pay special attention to transaction isolation because of the multi-database
configuration of most COE-based systems.

Database developers are responsible for defining and implementing the integrity constraints of their databases. The
SDS is responsible for enforcing the developers’ integrity constraints when they are defined within the database.
Application developers must ensure that their applications connect properly to their databases and do not connect
improperly to anyone else’s database segments. Adoption of these practices protects all applications’ data and
allows the SDS to maintain all databases reliably.

Within a component database the implementation of data integrity takes the form of what are often called constraints
and business rules. In the current context, constraints are defined as the rules within the database that govern what
values may exist in an object. Business rules are those rules within the database that govern how data is updated and
what actions are permitted to users.

Until recently, commercial database management systems were limited in their ability to support the variety of
constraints and business rules that may be needed in a database. As a result, most constraints and business rules of
legacy DII databases have been implemented in the applications, not the database. Because of the federated database
architecture and because the applications that maintain those databases are also developed independently, it is
difficult to ensure uniform and consistent enforcement of those rules and constraints by a DII COE SDS.

To avoid problems with constraint enforcement in the DII environment, developers must place their business rules
and constraints in their databases rather than their applications. This keeps control of data maintenance access in the
hands of the developers where it belongs and ensures that constraints cannot be bypassed. Developers have the
knowledge of their constraints and business rules; DBAs and users do not.

Database Integration Requirements

DII COE I&RTS: Rev 3.0 July 199782

The reason for placing constraints in the database is shown in Figure 4-3. Application One and its associated
component database were implemented with business rules and constraints in the application. Application Two
placed those constraints in the database. When a third application (Browser) accesses both databases, it is unaware
of Database One’s business rules because they are inaccessible. If this application, which could be a user-developed
query tool, modifies Database One, it could corrupt the database out of ignorance.

Placing the business rules and constraints in the database promotes client/server independence. The efficient
implementation of constraints and business rules will have to make use of the DBMS capabilities. If these rules are
in the component database, the application is less dependent on the COTS DBMS product. Also, this approach can
reduce network communications loading by allowing the DBMS, rather than the application, to enforce the rules
within the database. Checking rules within the database avoids passing multiple queries and their results over the
network between the DBMS and the application.

4.2.5 Discretionary Access

Discretionary access addresses the selective connection of users to databases through applications. Database access
is discretionary because not all users have the same permissions to use applications. The objective is to ensure that
users’ database connections operate in the proper context for the applications. Users must be able to operate several
different applications at the same time. The DBMS server must effect each application’s accesses to different sets of
data objects. This means permission to access to specific tables and the mode (read or write) of that access. Because
several databases exist on the SDS, each application must be written to access only the database(s) it belongs with; it
must be unable to access tables belonging to some other application for which it does not have access privileges.
Each user-application connection will have only the permissions needed for that context.

Database Integration Requirements

DII COE I&RTS: Rev 3.0 July 1997 83

Application 1

Business
Rules

Constraints

Application 2 BROWSER

Business
Rules

Data Tables Accessed by Applications

Constraints
Constraints

Constraints

Figure 4-3: Business Rules and Constraints

In this context, DII databases can be broadly characterized as either public or private. A public database is intended
to be generally available and, in most cases, access to it will be given to all users of a particular system. Public
databases are usually read-only. Access to a private database is discretionary, not general, and is usually restricted to
a small group of a system’s users. That system’s administrators must specifically grant individuals access to a
private database. Private databases often have users with read/write permissions and users with read-only
permissions. A public database will be composed of Shared database segments as defined in subsection 4.2.1 A
private database may also contain Shared database segments, but the data itself needs to be more closely controlled
than the public database. The public/private and Shared/Unique categories address different issues. The distinction
has to do with user access in the former case and with configuration control in the latter case. A Shared database has
many developers writing applications against it; its schema cannot be easily modified. A public, application-owned
database would have one developer but many users; its schema could be changed without affecting other developers.

There are three components to the discretionary access issue: Session Management, Discretionary Access Control,
and Access Management. The first refers to the DBMS’ ability to keep different connections separate. The second
addresses the context of an individual connection. The third deals with the requirements of system and database
administrators to manage the accesses that are provided to users. Without the correct functioning of all three
components, data integrity and consistency can be compromised.

In order for a COE system to be useable, it must provide support to systems administrators as they manage users’
discretionary access to subsets of applications and databases. This means that the approach taken in supporting
access management must fit with overall system administration and security policy.

Database Integration Requirements

DII COE I&RTS: Rev 3.0 July 199784

4.2.5.1 Session Management

A database session is an individual connection between an application and the database management system. It is
the means by which the SDS isolates one user’s activities working with an application from all other users that are
connected to the DBMS. In this context autonomous applications such as message processors are also database
users.

The SDS is responsible for session management as shown in Figure 4-4. In this example, two users are connected to
the SDS. The first has two sessions with application A and one with application B. The second has a session with
application B and one with application C. The SDS maintains five separate sessions. Two sessions are connected to
component database A, two to component database B, and one to component database C; no session is connected to
component database D.

Note that each different execution of an application is considered a separate session and is functionally isolated from
other executions of the same application. Thus, when User 1 starts two separate instances of application A, the
DBMS treats them as different sessions (A1 and A2). This ensures that changes being made in different sessions
propagate correctly and do not corrupt data accessed by other sessions.

The key points with respect to session management are that the DBMS, in managing connections, provides sessions
to isolate each one from all others. Isolation facilitates transaction management and system recovery. It also supports
the traceability of database transactions to the user and application.

A1
B1

A2

B2

C

CB2B1A2A1

A B C D

Listener Processes

Component Databases

DBMS

Database Server
User

Workstations

Figure 4-4: Session Management

4.2.5.2 Discretionary Access Control

Discretionary access control is used to manage users’ permissions to employ applications to access or modify data
managed by the SDS. It has a broader scope than information security. Security is focused on whether users are
permitted to know about and allowed to view certain information. Discretionary control of access deals not only
with users’ permissions to change information but also the context in which they are permitted to make changes.

Database Integration Requirements

DII COE I&RTS: Rev 3.0 July 1997 85

Users will have access to multiple databases through many different applications. Their overall database permissions
are the union of the permission sets of the individual applications they have the right to use. At any point in time
only the subset of those permissions relevant to the active session can be allowed to be active.

Figure 4-5 illustrates the need for discretionary access. A user has three database sessions active, one with each of
three different applications. Each application accesses a different set of objects within the database. The data objects
shown represent all objects that a user has permission to access and are marked to show which application context is
relevant to that access. If all of the user’s database permissions were active at all times, it would be possible for one
or another of the applications to access and modify data that is not relevant to it. Instead, each application must only
be able to access its corresponding data objects.

User Accessible Data Tables

Application 1 Application 3

Application 2

Figure 4-5: Functional Context

It is the responsibility of database and application developers to provide discretionary access controls. The
operational sites’ administrators are responsible for using those controls when assigning database and application
privileges to users. The necessary access controls will be defined in the database segment design as discussed in
subsection 4.2.5. Session management by the DBMS provides the database and application developer the isolation
needed to implement discretionary access. When designing access controls the following principles apply:

• Users shall have unique accounts within the DBMS. Those accounts shall have only the database permissions
needed for their work

• A user’s database permissions will only be active within the context of the current application and database

session. In other words, when a user starts a database session through some application, that session will only be
able to access the data objects appropriate to the application and the only active permissions on those objects
will be those appropriate to that application’s use of those objects.

Database Integration Requirements

DII COE I&RTS: Rev 3.0 July 199786

These context-specific controls are necessary because users will have access to multiple applications and each
application has its own set of database permissions. As a user is granted access to data objects based on the
applications needed, the total set of database grants for that user expands. The DBMS manages sessions at the user
account level, so each user has all granted permissions on all objects whether they are relevant to the current session
or not. If access were not dependent on context, users could have inappropriate permissions for a particular session.
For example, a user might be able to write to a database segment that is supposed only to be read by the current
application. Such pathological connections to data objects will, almost inevitably, lead to data corruption.

The context in which an application operates on the database is the application’s “database role.” A database role is
the minimal set of database permissions needed for an application to function correctly. Since these roles are linked
to the application, their definition is the responsibility of the application developer. However, the roles are
implemented within the database so they become part of the database segment. Role implementation is discussed in
subsection 4.3.5.

4.2.5.3 Access Management

Access management addresses the work of system and database administrators giving users the permissions they
need. They must be able to connect users to applications, to databases, and to database segments. They must also be
able to revoke or modify those connections as users transfer or assume different responsibilities. The large number
of applications and databases available within COE-based systems could make the administrators’ tasks
unmanageable if access management is not supported with the proper tools. This section discusses the developers’
responsibilities for supporting access management.

The act of adding an application to a user’s access list, menu, etc. entails adding associated database permissions to
that user’s DBMS account. Similarly, revoking access to an application requires that corresponding privileges be
revoked within the DBMS. Users must have the proper permissions on both the application and the database, so the
two system activities are interdependent. Access to applications will often be granted in logical sets or groups of
related applications. As discussed in the previous section, access to databases must be linked to each individual
application or the functional context of the application is lost. One application could have multiple permission sets if
the same executable is used for both read-only and read/write accesses.

The grant association process is illustrated in Figure 4-6. A user is being given permission to use three applications.
As a part of that process, the user must also be assigned the database roles associated with those applications.
Through the database roles, the user receives the permissions on the data objects needed to use the applications. If,
later, the user no longer needs to use these applications, the administrators can reverse the process. When the
application permission is revoked, the database roles are withdrawn from the user. The other reason for managing
database roles at the application level can also be seen here. Assume that these applications represent a group that is
accessed together and that have identical database permissions. If the grouping of applications changes at some
point, the collective role might not be valid. In addition, if there is not a direct one-to-one correspondence between
applications and database roles, it becomes impossible to determine when a database role should be revoked.

Database Integration Requirements

DII COE I&RTS: Rev 3.0 July 1997 87

Application 1

Application 2

Application 3

Application 1

Application 2

Application 3

Role 1

Role 2

Role 3

Role 1

Role 2

Role 3
Associated Roles
and Data Tables

Figure 4-6: Grant Association Process

Database application developers are the only ones with comprehensive knowledge of interactions with the database.
They must define the database roles and provide the scripts or command sets that create them for inclusion in the
database segment. The scripts that grant and revoke database roles are part of the application segment. This allows
them to be executed by the system’s administrators when they are managing access to the applications.

4.2.6 Supporting Multi-Database Tools

Access to multiple databases is one of the major benefits that the COE brings to its users. Database browser tools,
such as APPLIX, allow users to construct ad hoc queries that span different subject areas and that are not supported
by mission-specific applications. At the same time, however, such multi-database applications present special
problems in the COE context. If the databases were read-only, browsers would not cause problems. However, many
databases are designed to be maintained interactively using the applications associated with them. This means that
users will have permission to write to databases. Those write permissions are potentially active when a user is using
a database browser that means that the browser tool can also write to COE/SHADE databases. This is the reason for
the database roles discussed above. Since the browser is independent of the applications designed for particular
databases, it will be unaware of any constraints or business rules that are in those applications. Thus it could corrupt
data due to its ignorance of the rules.

The key to ensuring database integrity in this case (as in all others) is the enforcement of constraints and business
rules within the database, not within the database applications. If the rules are part of the database, they cannot be
bypassed. While the SDS may withhold write permissions from browser tools, maintaining the constraints in the

Database Integration Requirements

DII COE I&RTS: Rev 3.0 July 199788

database provides an extra measure of protection. This also supports the future employment of browser tools as
multi-database read/write applications.

The second issue is one of understanding the context of a particular database. When users formulate queries that
span multiple databases, they are likely to encounter differences in the way information is represented among those
databases. This could lead the users to draw erroneous conclusions from their query results because they do not
understand the differences between the databases. To limit the chances of this, component database developers shall
provide comprehensive information on their databases to be incorporated in the DBMS data dictionary and the
SHADE repository. This information is part of the database segment. At a minimum, developers must provide
comments for each data element and object (including triggers and stored procedures) that explain its usage and
(where appropriate) units-of-measure.

4.2.7 Client/Server Independence

The COE uses a client/server architecture. This applies to database services as well. Developers must preserve the
independence of their applications, functioning as DBMS clients, from the SDS. Specifically, applications that
access databases must not be built so that they have to reside on the SDS in order to work correctly. It cannot be
assumed that all operational sites will have a local SDS. Further, where sites have a local SDS it may be on a
separate machine that is dedicated to the DBMS, or the server may be collocated with the application on a single
machine acting as the application server and the SDS. To maintain independence and support the client/server
architecture, applications cannot assume they reside on the SDS.

To sustain the independence between DBMS clients and the SDS, developers must not mix extensions to the DBMS
with their databases and must separate the database from the applications that use it. If specialized data management
services are needed by particular applications and are not part of the COE database services, the provision of such
services must be approved by and coordinated with the DISA Chief Engineer.

For example, assume some application needs a COTS expert system shell to manage a knowledge base that is a
component of the application and that interacts with the SDS. The expert system shell, to work properly, has to be
collocated with the DBMS. The expert system then becomes a segment that is separate from the application that uses
it.

4.2.8 Distributed Databases

A distributed database is one whose data is spread across multiple sites. Data is replicated in a distributed database
when copies of particular objects or records exist in more than one of those sites. Data is fragmented when they are
split among sites. Databases are distributed (fragmented or not) to improve responsiveness and increase availability
in systems that serve geographically dispersed communities. Databases are replicated to enhance their survivability
in the same circumstances. In either case, one implementation objective of any distributed database is to provide
location transparency. This means that the user need not know where data is located to be able to access or work on
them.

Depending on the component database, the COE/SHADE has several flavors of distributed databases. Some current
databases are relatively static and are replicated at multiple sites, but exist independently. They are updated through
the periodic replacement of information at each site that has a copy. Others, such as the JOPES Core Database, are
dynamic and are replicated concurrently across several sites for survivability. They use transactions to effect updates
at the affected sites. Some systems, like the Air Force’s Theater Battle Management Control System (TBMCS), both
replicate and distribute data on multiple servers within a site to distribute processing and enhance survivability.

The COE provides distributed database management services for the developers of distributed databases so they can
maintain location transparency and distributed transaction processing. The specific services implemented for a
particular COE database system will depend upon the nature of its distributed data and are the responsibility of that
system’s Chief Engineer. GCCS, for example, uses an asynchronous transaction model. A financial system may
require the use of the more restrictive, but synchronous, two-phase commit.

Database Integration Requirements

DII COE I&RTS: Rev 3.0 July 1997 89

The technology that supports the distribution of databases as used in the DII COE is evolving rapidly. The GCCS
program, for example, does not at present prescribe a particular implementation method. Developers of distributed
databases must coordinate their activities with the DII COE Chief Engineer and their program’s Chief Engineer to
ensure that their approach can be supported and is consistent with the objectives of the broader program. When a
distributed database is implemented, developers should keep in mind that the distribution plan (fragmentation
schema) may change over time. Distribution methods and the tools used to support them will also evolve as
technology matures. Where developers are assigned responsibility for database fragmentation schemas, each
fragment shall be in a separate segment so different schemas can be implemented.

The distribution of data also means that users may have access to multiple SDSs. The assignment of users to servers
will depend on the distribution schema as implemented for the various sites. The sites’ DBAs are responsible for
aiming users’ processes at the correct SDS. Developers shall not assume that users are attached to a particular
server. Developers’ applications shall not modify the user’s DBMS environment to associate them with a particular
SDS. The COE/SHADE data access tools facilitate transparent access to distributed data.

4.2.9 Backup and Recovery

Database backup and recovery address the protection and preservation of information in SHADE databases for DII
COE-based systems. The current discussion addresses only those backup and recovery issues specific to databases
and database management systems. Conventional system backup and recovery are addressed with the appropriate
common support tools for the system as a whole.

COTS DBMS software provides sophisticated tools to prevent data loss or corruption due to system or media
failure. Their tools are focused on transaction management with the overriding goal of ensuring that the database can
be recovered to a consistent state no matter when or how failure occurs. In the most general sense, DBMS recovery
mechanisms maintain transaction logs that keep a continuous record of all database changes. In the event of a system
failure, those logs are applied to the database to remove incomplete transactions and recreate committed ones. In the
event of media (disk) failure, the last archived copy of any affected DBMS files is used together with the transaction
logs (archived and online) to ‘roll forward’ or recreate all changes that are not in the restored DBMS file.

Execution of DBMS and database backup and recovery is the joint responsibility of a site’s system and database
administrators. DISA provides tools to assist them in executing their duties. COE developers must implement their
databases within the constraints of the DII COE tools and the DBMS vendor tools. Support for special requirements,
such as off-line archiving of transaction logs, must be coordinated with the sponsoring COE program office and the
DII COE Chief Engineer.

Runtime Environment

DII COE I&RTS: Rev 3.0 July 199790

4.3 Guidelines for Creating Database Objects

This section provides guidelines for developers in creating their database segments. Its objective is to
support consistency across different databases and improve the mutual independence of the database
federation. Also, the guidelines strive to make sure database segments do not inadvertently affect each
other.

Developers should strive to make all object names meaningful. Names must start with a letter of the
alphabet and may include letters, numbers, and underscores. Names may be 1 to 30 characters in length
(except for table names that are restricted to 1 to 26 characters) and cannot be a DBMS reserved word
(refer to Appendix F for a list of these reserved words). Case does matter when creating names in the DII
COE environment. While a specific RDBMS (such as Oracle) may not be case sensitive in naming objects,
there are some (such as Sybase) which are case sensitive. To ensure consistency and portability of database
objects and their elements, database object and element names must be implemented in uppercase.

4.3.1 Database Accounts

Three categories of database accounts have been defined within the COE: DBAs, Owners, and Users. They
have different functions and levels of access to the DBMS based on those functions.

4.3.1.1 Database Administrators

The Database Administrator (DBA) accounts have access to all parts of the DBMS. They are to be used
only for system administration. Their use by database segments is prohibited except during the installation
process as discussed in Chapter 5.

4.3.1.2 Database Owners

The Database Owner (DBO) accounts are the creators and owners of the data objects that make up an
application’s database segment. The name must be unique within the COE community and approved by the
SHADE Chief Engineer to avoid naming conflicts. Developers will normally use the segment prefix or a
variation of it as the owner account name. The segment prefix will also be used as the database schema
name and will be incorporated in database file names as discussed below. Owner accounts must have their
password changed after a database installation. Users shall not use the owner accounts to connect to
databases. Developers shall not grant the DBA privilege to owner accounts.

All of the database segment’s installation, except the definition of physical storage, the creation of the
DBO, and the creation of database roles, must execute using the DBO account and password. After a
successful installation of the data store segment, the DBO account’s password must be changed and its
connect capability must be disabled.

4.3.1.3 Users

User accounts belong to the individuals accessing COE databases. Each individual must have a unique user
account. User account naming conventions are defined by the individual COE program office (e.g. GCCS
Chief Engineer) and will usually be the same as the user’s operating system account. The user’s account
name must be unique within a specific COE database server and may be required to be unique within a
COE program. Creation and maintenance of user accounts are a site-DBA responsibility within the rules
provided by the specific COE program office. Developers shall not assume the existence of particular users
and shall not create user accounts.

The creation of accounts that perform database services is an exception to the rule that developers not
create user accounts. Such accounts support autonomous processes, such as message parsers, that access a

Runtime Environment

DII COE I&RTS: Rev 3.0 July 1997 91

database on their own. These processes cannot connect to a database using the DBO account for reasons of
security and data integrity, but their identity must be known to developers for their specialized database
permissions to be set up correctly. Such accounts will be defined by the developer and created as a part of
the segment installation.

4.3.2 Physical Storage

Database management systems provide file management transparency across multiple host computer
systems by hiding the details of file storage from the database’s data objects. At the same time, however,
the placement of data objects on physical storage devices has an effect on system and database performance
due to disk contention and other file system access issues.

Developers cannot assume that DII SDSs have uniform hardware configurations. Some will have disk
arrays, possibly mirrored, that appear as a single, large mount point; others will have multiple mount points
representing separate disks or several mirrored arrays. Further, it cannot be assumed that existing hardware
configurations will remain static or that current disk-mirroring technologies will remain in use. DII
developers, therefore, shall not use ‘raw’ partitions, but shall place all files in their segment’s directory tree.
DISA will provide software tools to insulate developers from the SDS’s physical implementation. DISA or
the cognizant DOD program office is responsible for providing the core configuration for a COE database
server. The site’s administrators are responsible for configuring installed servers for optimum performance.

4.3.2.1 Data Store/File Standards

The DBMS-managed components of a database segment can be grouped into functional sets based on their
use within the segment. These functional sets are defined as a data store. Data stores are physically kept in
database files whose implementation varies depending on the DBMS being used. A segment’s database will
normally consist of two functional sets (data and indexes) and hence two data stores. The data store
identifier will incorporate the database segment prefix and the function of the data store. GSORTS_DATA is
an example of a data store name.

Developers shall define one or more data stores for their database segments. The objective is to allow data
files to be spread across multiple, physical storage devices based on the data store’s function within the
DBMS. Data store names must be meaningful and use a maximum of 30 characters (uppercase letters,
numbers, and underscores). As discussed earlier, the name is case sensitive and only uppercase letters will
be used. No DBMS reserved words will be used.

Data store names must also be associated with the segment and function. Most applications will have either
two or three data stores: Data, Indexes, and (if needed) Static data. The following naming convention is to
be used:

<segment prefix>_DATA,
<segment prefix>_INDEX, and
<segment prefix>_STATIC

for the three storage areas respectively. The Logs within a Sybase database are treated as data stores in a
Sybase implementation.

4.3.2.2 Data Storage Implementation

Database segments shall create their data stores through the segment’s PostInstall descriptor.

Database segments shall use the COECreateDS API to implement physical data storage. This API
allocates physical storage and creates the data store. For Sybase, this includes the storage area for logs.
COECreateDS hides the SDS’s implementation of physical storage. In this way the database segment is

Runtime Environment

DII COE I&RTS: Rev 3.0 July 199792

insulated from the physical server implementation, whether it uses raw devices or file system directories,
has disk arrays, or uses other storage techniques. Figure 4-7 illustrates data store allocation.

Where COECreateDS is not available, developers will provide the scripts to create their data stores and
the operating system files associated with them. Data files will be created in the DBS_files subdirectory
of the database segment using the API provided by the DBMS vendor. One or more data files may be
created to support each storage area. The method for file creation varies with the DBMS being used. See
Appendix F for DBMS-specific file creation information. The data file names should be chosen so they are
clearly associated with the storage area. The recommended naming convention is

<segment prefix>_<store type><n>.dbf

where ‘store type’ is the storage area’s purpose (e.g. index) and ‘n’ is a one-up serial number for the file.
An example data file name is gsorts_data1.dbf.

Database
Definition

Script

CREATE_DS
Service

RDBMS
Server

DBSORT_DATA

Disk 1

DBSORT_INDEX

Disk 2

DBSORT_LOG

Disk 3

Database Storage

Query DDL

Request

Status

CREATE_DS DBSORT < DBSORT_LIST

where DBSORT_LIST file contains:

DBSORT_DATA 1,000K
DBSORT_INDEX 1,000K
DBSORT_LOG 300K LOG

Figure 4-7: Data Allocation

4.3.3 Database Definition Scripts

A database definition script is a shell script that contains all database definition commands for a specific
database object. These objects include tables, views, triggers, and stored procedures. The name of the script
is the same as that of the database object it defines. Depending on the object type, multiple sections can be
defined within one file to perform all the data definition functions required for that specific database object.

The scripts used to create data objects are also used by database administrators in the maintenance of the
databases and the SDS. DII database administrators have to manage thousands of data objects (tables,
views, etc.) spread across multiple database owner accounts. Routine maintenance such as rebuilding
corrupted indexes or views can become impossible because the DBA cannot locate the script file that
contains the object’s definition among the thousands of scripts on the SDS. To avoid these problems, DII

Runtime Environment

DII COE I&RTS: Rev 3.0 July 1997 93

developers must organize their Data Definition Language (DDL) commands into a series of database
definition scripts. These scripts must conform to a particular file naming convention and structure.

The database definition script is structured to execute various database definition commands based on the
input argument given to it. This functionality is implemented with a case statement that executes on the
input argument. Table 4-1 lists the input arguments to be used for database definition scripts. See
Appendix F for examples of data definition commands.

A database definition script for a table should contain all constraints, triggers, and indexes for the table.
Legacy views (see subsection 4.3.4.3) of the table, if authorized by the cognizant DOD configuration
management authority, may be included in the table’s definition script. Other views must be created using
their own scripts. Rules, stored procedures, packages, and other objects should each be created in their own
separate scripts.

Database roles that are associated with a database schema, such as a default read-only role, can be provided
with a database segment’s definition scripts. The grants for that role, since it is part of the segment, can be
incorporated into the table and view definition scripts. Grants to database services accounts (e.g. message
parsers) can also be incorporated in those scripts. Database roles that are associated with applications or
those whose grants span multiple database owners must be created using their own scripts. These scripts
should include all the grants needed for the role regardless of the object’s owner. Such grants should be
segregated by owner.

The CREATE_DATA_STORE argument for a database definition script should only be used when the COE
tool COECreateDS is not available.

4.3.4 Database Objects

The definition of a database schema – the set of data objects, their interrelationships, constraints, and rules
for access or update – is the responsibility of the developers. Developers of application database segments
shall not duplicate data objects that are part of the corporate databases provided by DISA. Where possible
and appropriate, developers should take advantage of and share objects belonging to other databases as
found within the SHADE repository. If a database segment does not meet the full needs of the developer,
changes should be proposed to the cognizant DOD configuration authority for the database segment
meeting most of the needs. The developer may choose to develop a similar database segment, pending
resolution of the change request. To facilitate sharing of data, developers shall provide the definitions of
their schema components for inclusion in the DBMS data dictionary as discussed in section 4.1. Definitions
for data stores, tables, elements, stored procedures, and views are stored in the system’s data dictionary
tables as comments. The maximum length allowed for the description is 255 characters. In addition,
narrative information on all these databases should be provided during Segment Registration so developers
can access their definitions in the COE online services (see Chapter 10).

Developers shall provide DISA with their proposed database schema early in the segment design process.
The schema will be reviewed for duplication of objects in other component databases. See Chapter 3 for
more information on the database segment development cycle.

4.3.4.1 Database Tables

Database tables are the objects that store data records. Within a database schema, data elements will be
logically grouped to form tables. Table names must be meaningful and a maximum of 26 characters in
length (uppercase letters, numbers, and underscore). This size differs from the 30 characters available to
other objects because of the legacy view naming convention (see section 4.3.4.3). If Oracle database
snapshots are being used for data replication services for other sites, developers should limit the table name
to 20 characters. Oracle will use the remaining six characters to identify the internal tables and views that
support a database snapshot. No reserved words may be used in the table name.

Runtime Environment

DII COE I&RTS: Rev 3.0 July 199794

Argument Purpose
CREATE_DATA_STORE create a data store (use CREATE_USER to create the DBO

account first)
DROP_DATA_STORE remove a data store
CREATE_ROLE create a database role
DROP_ROLE drop a database role
CREATE_RULE create a Sybase rule
DROP_RULE drop a Sybase rule
CREATE_TABLE create a database table
DROP_TABLE drop a database table
CREATE_VIEW create a database view
DROP_VIEW drop a database view
CREATE_CONSTRAINT create a database constraint (i.e. foreign key)
DROP_CONSTRAINT drop a database constraint
CREATE_INDEX create an index
DROP_INDEX drop an index
UPDATE_INDEX perform update statistics for Sybase indexes
CREATE_USER create a database user account
DROP_USER drop a database user account
DISABLE_LOGIN Revoke connection privileges (login) from a database account
ASSIGN_GRANTS assign grants to a user or role/group
REVOKE_GRANTS revoke grants from a user or role/group
LOAD_DATA load a table with data (from within the command script)
CREATE_PROCEDURE create a stored procedure or database package
DROP_PROCEDURE drop a stored procedure or database package
CREATE_TRIGGER create a database trigger
DROP_TRIGGER drop a database trigger
CREATE_SEQUENCE create an Oracle sequence
DROP_SEQUENCE drop an Oracle sequence
REGISTER_DATA load application data (i.e., configuration parameters)

Table 4-1: Definition Script Arguments

The creation of tables in System-owned storage areas (e.g. the Oracle SYSTEM tablespace or the Sybase
master database) is prohibited. The tables must be created in storage areas created by and belonging to the
application database segment. When creating a table, the storage area name must be specified. “Create
table” statements must stipulate NOT NULL or NULL constraints for each column because different
DBMSs may default differently on this constraint type.

4.3.4.2 Data Elements

Data elements are the columns or fields within a schema that are grouped together into tables. Data element
names shall comply with DOD standards from the DOD Data Model (DDM) and Defense Data Dictionary
System (DDDS) where applicable. Within a schema developers should use the same characteristics (data
type, length, number precision, default values, constraints, and definition) for all occurrences of the same
element name. If elements are chosen from the DDM, they shall use the data type and units of measure
prescribed in the standard.

Developers shall not use data types that are machine-dependent. This applies primarily to numeric data.
Data elements may be shared across tables and data stores, and across COTS DBMS servers. As an
example, the ‘float’, ‘double’, and ‘real’ data types are machine-dependent in both Oracle and Sybase. See

Runtime Environment

DII COE I&RTS: Rev 3.0 July 1997 95

Appendix F for more information on data types available in specific DII COTS DBMS and which are
machine independent.

The use of default values and declarative constraints is recommended to ensure data integrity and
consistency. Developers must balance this against instances where invalid data items must be forced into
the system, especially when dealing with real-time data. In such cases declarative constraints could cause
data loss.

4.3.4.3 Database Views

A view does not actually contain or store data, but derives its data from the objects on which it is based.
These objects can in turn be tables or other views. View names must be meaningful and a maximum of 30
characters in length (uppercase letters, numbers, and underscore).

Views are often used to restrict users’ access to vertical (columnar) or horizontal (row-wise) subsets of data
tables. Views can also be used to hide data complexity when displaying related information from multiple
tables or to present data from a different perspective than that of the base table. Views can provide location
transparency for local and remote tables in a distributed database, a convenient way of storing complex
queries, and isolation of applications from changes in definitions of base tables.

Views can be queried, updated, inserted into, and deleted from, with restrictions. All operations performed
on a view affect the base tables of the view. Current DBMSs are limited in their ability to support updates
through views. If developers need updateable views, the DBMS’s capabilities and restrictions must be kept
in mind. If the updateable views are required for security or data privacy, developers should not grant users
access to the base tables, only to the views.

In general, the following restrictions apply to updateable views.

• Horizontal (row-wise) views: SDSs can support inserts, updates, and deletes through horizontal
views. Such views include those where one table is used to constrain the view to a subset of rows in
another table. Developers are responsible for implementing appropriate error handling if users try to
insert a row that duplicates a hidden row or that contains a value in the restricting column(s) the users
are not permitted to see.

• Vertical (columnar) views: SDSs can support updates and deletes through vertical views as long as

the database constraints do not reference hidden columns. Inserts can only be supported if all hidden
columns are allowed to be null or if triggers are provided to populate them with default values.
Developers are responsible for implementing appropriate error handling if a user’s update violates a
constraint on a hidden column.

• Multi-table views: At present, the SDSs implemented in the COE cannot consistently support data

modifications through views of more than one table. Developers should implement such updateable
views in applications. These views should be accompanied by comparable read-only views of the
individual tables.

A view is dependent on the objects referenced in its defining query. All of these objects must exist, and the
required privileges to these objects must have been granted to the owner of the view before the view is
created. Views will be created in a database segment as part of its install process.

Legacy Views are views created to support applications written against earlier versions of a database object.
Such views make the object appear as it did in an earlier version of the database segment. They support
read-only legacy applications. Applications that need to update data will not be able to use legacy views.
Code modifications required to update data in the new data structures will need to be coordinated with data
structure changes.

Runtime Environment

DII COE I&RTS: Rev 3.0 July 199796

The decision whether to require Legacy Views rests with the DII COE Chief Engineer working with the
affected program’s Chief Engineer on a case-by-case basis, although developers may choose to do so on
their own. In most cases, DISA will require Legacy Views only for Shared or Universal public databases
whose tables support a large number of read-only users.

When Legacy Views are provided, they must be implemented in the following manner. When a database
table is created, a view that maps directly to the table must also be created. When the database table is
modified, the view of its previous version is also modified so that applications accessing the view are
unaware of them, and a view that maps directly to the new structure is created. This method allows
applications that access the table to continue to operate if immediate source code modifications are not
possible. Applications must eventually be modified, but in the meantime views can be maintained to
support previous versions of the table. Figure 4-8 demonstrates the use of legacy views across four versions
of a database table.

Runtime Environment

DII COE I&RTS: Rev 3.0 July 1997 97

S
O

R
T

SM
_B

ID
E

S
T

ab
le

S
O

R
T

SM
_B

ID
E

S
_0

01
V

ie
w

A
pp

lic
at

io
n

A
L

eg
ac

y
A

pp
lic

at
io

n
B

L
eg

ac
y

A
pp

lic
at

io
n

C

•
V

er
si

o
n

4
.0

 o
f

th
e

 S
O

R
T

S
M

_B
ID

E
S

 t
ab

le
 is

 r
el

ea
se

d

•
S

O
R

T
S

M
_

B
ID

E
S

_
00

1
le

g
ac

y
vi

e
w

 d
e

le
te

d

•
S

O
R

T
S

M
_B

ID
E

S
_0

02
 le

ga
cy

 v
ie

w
 u

pd
at

ed

•
S

O
R

T
S

M
_

B
ID

E
S

_
00

3
co

n
ve

rt
ed

 to
 le

g
ac

y
vi

ew

•
S

O
R

T
S

M
_

B
ID

E
S

_
00

4
cr

ea
te

d
as

 d
ir

ec
t v

ie
w

•
A

pp
lic

aa
tio

n
 A

 m
us

t b
e

up
da

te
d

, t
hu

s
q

ue
rie

s
th

ro
u

gh
S

O
R

S
M

_
B

ID
E

S
_0

04
 v

ie
w

•
A

pp
lic

at
io

n
 B

 n
o

t u
p

da
te

d,
 th

us
 q

ue
ri

es
 th

ro
u

gh
 le

g
ac

y
vi

ew
S

O
R

S
M

_
B

ID
E

S
_0

02

•
A

pp
lic

at
io

n
 C

 n
o

t u
p

da
te

d,
 th

us
 q

ue
ri

es
 th

ro
u

gh
 le

g
ac

y
vi

ew
S

O
R

S
M

_
B

ID
E

S
_0

03

S
O

R
T

S
M

_B
ID

E
S

_0
02

V
ie

w
S

O
R

T
S

M
_B

ID
E

S
_0

03
V

ie
w

SO
R

T
SM

_B
ID

E
S

_0
04

V
ie

w

V
er

si
on

 4

SO
R

T
SM

_B
ID

E
S

T
ab

le

SO
R

T
SM

_B
ID

E
S

_0
01

V
ie

w

L
eg

ac
y

A
pp

lic
at

io
n

A

L
eg

ac
y

A
pp

lic
at

io
n

B

A
pp

li
ca

tio
n

C

•
V

er
si

o
n

3.
0

 o
f t

h
e

S
O

R
T

S
M

_
B

ID
E

S
 ta

b
le

 is
re

le
as

ed

•
S

O
R

T
S

M
_

B
ID

E
S

_
00

1
le

g
ac

y
vi

e
w

 u
p

da
te

d

•
S

O
R

T
S

M
_

B
ID

E
S

_
00

2
co

nv
er

te
d

 to
 a

 le
g

ac
y

vi
e

w

•
S

O
R

T
S

M
_

B
ID

E
S

_
00

3
cr

ea
te

d
as

 a
 d

ire
ct

 v
ie

w

•
A

pp
lic

at
io

n
 C

 u
p

da
te

d
 to

 q
u

er
y

ve
rs

io
n

 3
st

ru
ct

u
re

•
A

pp
lic

at
io

n
 B

 n
o

t u
p

da
te

d
, t

h
us

 q
ue

ri
es

 th
ro

u
gh

le
g

ac
y

vi
ew

S

O
R

S
M

_B
ID

E
S

_0
02

•
A

pp
lic

at
io

n
 A

 n
o

t u
pd

at
e

d,
 th

u
s

qu
er

ie
s

th
ro

ug
h

le
ga

cy
 v

ie
w

 S
O

R
S

M
_

B
ID

E
S

_
00

1

SO
R

T
S

M
_B

ID
E

S
_0

02
V

ie
w

SO
R

T
SM

_B
ID

E
S

_0
03

V
ie

w

V
er

si
on

 3

S
O

R
T

S
M

_B
ID

E
S

T
ab

le

SO
R

T
S

M
_B

ID
E

S
_0

01
V

ie
w

L
eg

ac
y

A
pp

lic
at

io
n

A

A
pp

li
ca

ti
on

B
A

pp
li

ca
tio

n
C

•
V

er
si

on
 2

.0
 o

f
th

e
S

O
R

T
S

M
_

B
ID

E
S

 ta
b

le
 is

 r
el

ea
se

d

•
S

O
R

T
S

M
_

B
ID

E
S

_
00

1
vi

ew
 is

co
n

ve
rt

ed
 t

o
a

le
ga

cy
 v

ie
w

•
S

O
R

T
S

M
_B

ID
E

S
_0

02
 c

re
at

ed
 a

s
a

di
re

ct
 v

ie
w

•
A

p
pl

ic
at

io
ns

 B
 a

n
d

C
 a

re
 u

pd
at

ed
to

 q
u

er
y

ve
rs

io
n

 2
 o

f
th

e
S

O
R

T
S

M
_B

ID
E

S
 ta

bl
e

st
ru

ct
u

re

•
A

p
pl

ic
at

io
n

A
 n

o
t u

pd
at

e
d,

 th
u

s
it

q
ue

ri
es

 th
ro

ug
h

le
ga

cy
 v

ie
w

S
O

R
S

M
_

V
ID

E
S

_
00

1

S
O

R
T

S
M

_B
ID

E
S

_0
02

V
ie

w

V
er

si
on

 2

S
O

R
T

S
M

_B
ID

E
S

T
ab

le

A
pp

lic
at

io
n

A
A

pp
li

ca
tio

n
B

A
pp

lic
at

io
n

C

•
V

er
si

on
 1

.0
 o

f
th

e
S

O
R

T
S

M
_B

ID
E

S
 ta

bl
e

is
re

le
as

ed

•
A

 S
O

R
T

S
M

_B
ID

E
S

 v
ie

w
 is

cr
e

at
ed

 th
at

 is
 a

 d
ire

ct
m

ap
pi

n
g

to
 th

e
S

O
R

T
S

M
_

B
ID

E
S

 ta
b

le

•
T

hr
ee

 a
p

pl
ic

a
tio

ns
 (

A
,B

,C
)

q
ue

ry
 t

he
 S

O
R

T
S

M
_

B
ID

E
S

ta
b

le
 th

ro
ug

h
th

e
S

O
R

S
M

_
V

ID
E

S
_

00
1

vi
ew

S
O

R
T

S
M

_B
ID

E
S

_0
01

V
ie

w

V
er

si
on

 1

Figure 4-8: Legacy Views

View names for legacy views shall consist of the table name followed by a three-character table sequence
number. They will be a maximum of 30 characters (uppercase letters, numbers, and underscore). Example

Runtime Environment

DII COE I&RTS: Rev 3.0 July 199798

legacy views are NID_ACFT_003 and IDBIND_001, where the first is a view representing the third
release of the NID aircraft table and the second is a view representing the first release of the Integrated
Database (IDB) individuals table.

4.3.4.4 Rules on Database Objects

Rules on database objects incorporate several different concepts. Their underlying purpose is to maintain
database integrity through the enforcement of the constraints and business rules of the database.

For purposes of this document, the following definitions apply. Constraints are restrictions on data
elements with respect to the values they may contain. For example, a country-code data element could be
constrained to the set of Defense Intelligence Agency (DIA) prescribed two-character country codes.
Business Rules are restrictions that occur in the context of database operations that affect multiple
interrelated objects and elements or that are beyond the ability of a constraint to express them. For example,
any update to a facilities table may require that an entry be written to an audit table recording the ID of the
user making the change and the time at which it was made.

Within the SDS, developers may use DBMS constraints, stored procedures, rules, packages, or triggers to
implement either constraints or business rules. The choice among these will depend on the capabilities of
the COTS DBMS being used.

4.3.4.4.1 Constraints

Developers should define all entity integrity constraints and referential integrity constraints that apply to
their database schemas. The information in these constraints is vital for maintaining database integrity.
Entity integrity should be enforced whenever possible using default, unique values, and check constraints.
Domain Keys (e.g. the SQL Check constraint) should be used to maintain the validity of column values.
Unique columns should be constrained rather than indexed. While the DBMS may use an implicit index, as
Oracle does, to enforce uniqueness, defining the constraint clearly documents the database design for the
users. Database primary keys, foreign key constraints, delete cascade actions, and update/delete restrictions
should be used to maintain referential integrity.

Primary and foreign keys convert logical relationships that are implicit in the database design into explicit
relationships. Primary keys identify unique physical records. Foreign keys relate primary keys to data in
other tables by requiring each value in a column or set of columns to match those in a primary key in the
referenced table. Foreign key constraints enforce referential integrity by preventing invalid data entry into
the database tables.

Where appropriate, constraints should be used to supply default values for columns. The
NULL/NOT NULL constraint must be explicitly stated for each column in all tables because different
DBMS implementations may behave differently with respect to nulls.

Constraints must be explicitly named. Constraint names must be meaningful and must not use reserved
words or default names. They may not exceed 30 characters (uppercase letters, numbers, and underscore).
The recommended naming convention is

<table name>_<cons>

where ‘table name’ is the name or abbreviated name of the table or table and columns involved in the
constraint and ‘cons’ is PK for a Primary Key, FK for a Foreign Key, or CK for a Check constraint. Foreign
key constraint names should incorporate references to both tables. Examples of constraint names are
IDBF_PK, EWIRD1_EMIT_FK, and ACFT_USR_CTRY_CK.

In most cases developers will wish to create their constraints after the data fill has been completed in order
to speed up the fill process. The implicit index that accompanies a Primary Key or Unique constraint will

Runtime Environment

DII COE I&RTS: Rev 3.0 July 1997 99

slow the data fill significantly. Constraints should not normally reference data objects that are outside the
database segment. See below for methods to implement inter-database constraints when they are needed.

Constraints should still be included in a database segment even when they cannot be enforced. If
developers must allow invalid data items into their database, as may be the case when processing real-time
data, they may not be able to enforce declarative constraints without losing information. Constraints should
still be defined, but disabled (e.g., by using Oracle’s disable constraint command) so that users and
administrators can understand the database schema. The ReleaseNotes segment descriptor and the
comments on the object stored in the data dictionary shall state that these constraints are deliberately
disabled so the site’s DBAs know that it is intentional. If constraints must be left disabled, the developers
are responsible for providing tools that support cleanup of invalid items.

4.3.4.4.2 Stored Procedures

Database stored procedures and functions consist of a set of DBMS commands (e.g. SQL statements, and
Oracle PL/SQL or Sybase Transact-SQL constructs) that are stored in the database and can be invoked by
an application to perform a task or a set of related tasks. Stored procedures and functions can be used to
obtain tighter control of database access. In addition, they improve performance by reducing the amount of
information that travels over a network and because they do not require interpretation prior to their
execution. The use of stored procedures and functions also reduces memory requirements as only a single
copy is loaded into memory for execution by multiple users.

Stored procedures are used to maintain database integrity or to enforce business rules when the constraints
imposed are too complex for simple SQL constraints. These procedures are stored in the database and can
be executed from any environment in which an SQL statement can be issued. A maximum of 30 characters
(uppercase letters, numbers, and underscore) may be used for the stored procedure name. Procedure names
should incorporate the name of the object(s) they modify and some meaningful indication of their functions
without using reserved words. Two examples of stored procedure names are NID_UPDATE_PROC and
GSORTS_FETCH_UNITID.

Stored procedures should not normally reference data objects that are outside the database segment. See
below for methods to implement inter-database stored procedures when they are needed.

Database stored procedures are installed after all of the database objects defined in the database segment
have been installed. In general, the stored procedures in a database segment should support integrity checks
that are typically invoked by triggers. A database segment may also provide stored procedures that perform
standard access functions against the segment’s tables. These access functions can provide better
performance and reduce maintenance efforts if underlying structures are changed.

4.3.4.4.3 Triggers

A database trigger is a procedure that is automatically executed when a triggering event occurs on the
associated table. A trigger can only be defined on a table and will fire whenever the associated event occurs
on the table or a view of that table. The action of a database trigger may cause another database trigger to
fire. Triggers can be used to generate derived column values, implement complex security rules, perform
auditing, maintain table replication, prevent invalid transactions, and enforce referential integrity.

Most triggers will be used to maintain database integrity. Others may be used to signal or send data to
other, interrelated or dependent database segments. Triggers may also be used to support the proper
replication of data and to perform data conversions. They are not to be used to start application processing
based on data entry. Trigger names must be meaningful (the table name and trigger type should be part of
the trigger name) without using reserved words. They may use a maximum of 30 characters (uppercase
letters, numbers, and underscore). An example of a trigger name is TAC_REMARKS_UPD_TRIGGER.

Runtime Environment

DII COE I&RTS: Rev 3.0 July 1997100

Triggers should not normally reference data objects that are outside the database segment. Database
segments should not install triggers on data objects outside the segment. See below for methods to
implement inter-database triggers when they are needed.

Database triggers are installed after all of the database procedures are installed. This order is prescribed
because triggers may invoke stored procedures. A trigger’s body may contain DBMS commands (e.g.
Transact-SQL or PL/SQL blocks) or it could invoke stored procedures to perform the same functions. The
use of stored procedures to support triggers is recommended for performance and maintainability.

4.3.4.5 Indexes

An Index is an optional structure associated with a table that is used to quickly locate rows of that table or
to ensure that a table does not contain duplicate values in specific columns when a uniqueness constraint
cannot be used. Indexes speed up retrieval when applications query a table for a range of rows or for a
specific row by providing a faster access path to data. Indexes are logically and physically independent of
data. The creation or deletion of an index may occur at any time and does not affect the data stored in the
associated table. Furthermore, creation or deletion of indexes only affects the speed of data retrieval, but
does not prevent any applications from functioning. Once created, indexes are maintained by the RDBMS
and are automatically updated when the data change due to addition, deletion or modification of rows. The
presence of many indexes on a table decreases performance when inserting, updating, or deleting data as
the associated indexes must also be updated. Indexes also require storage in the DBMS; the use of multiple
indexes requires more storage.

Index names must be meaningful without using reserved words. A maximum of 30 characters (uppercase
letters, numbers, and underscore) may be used for the index name. It is recommended that the index name
incorporate a reference to the table and column for clarity. Developers should review the capabilities of the
DBMS before indexing small tables (less than 4000 rows). Indexing small tables can actually hurt
performance if the DBMS searches the index instead of reading the entire table into memory. The DBMS’s
query optimizer may ignore indexes on small tables. Indexes should not be used in place of Primary Keys
or Uniqueness constraints.

When considering a column or group of columns for an index, keep the following guidelines in mind:

• Indexes should not be used in place of primary keys or uniqueness constraints. If the DBMS treats
nulls in a manner that prohibits the enforcement of these constraints, developers should use a unique
index to maintain data integrity.

• To minimize lock/device contention when insertions occur frequently, clustering should always be

performed on a key that is statistically more “random” than other keys and is usable in many queries.
This is generally not the primary key. Prime candidates for clustering keys include columns accessed
by range or used in Order By, Group By or Joins. For example, Date/Time could be a good index key
for event data. Long strings generally make poor indexes.

• Too many indexes can hurt performance of inserts, deletes, and updates.

• Prime candidates for non-clustered indexes are columns used in queries when the data being accessed

is less than 20% of the data in the column.

• Keep the size of the key as small as possible to improve index storage and data retrieval.

• Indexes help select statements and hurt inserts/deletes. Consider when most of your operations will use

the index and, if so, whether the overhead required for the index is worth it.

• Storage of indexes in a separate data store can improve database performance.

Runtime Environment

DII COE I&RTS: Rev 3.0 July 1997 101

• The ordering of columns in SQL ‘where’ clauses may affect the behavior of the DBMS query
optimizer. Check the DBMS vendor’s documentation to identify such effects and use the vendor’s
evaluation tools to assist in optimizing DBMS commands.

• Consider using the various index types offered by the DBMS. B-Tree indexes are good for range

selections and ordered retrieval, but can suffer performance problems when used on large sets of
ordered, sequentially appended (e.g. time series) data. Hashed indexes are fast, but do not easily
support ordered retrievals. Bit-mapped indexes are efficient for binary fields like sex.

4.3.5 Database Roles

A database role, in the general sense, is a group of access privileges for database objects. These roles
implement the discretionary access controls discussed in subsection 4.2.5. Database roles also simplify the
management of user privileges within the DBMS. They are created by the database segment developers or
the developers of applications accessing databases to define sets of access privileges that can be given to
users by their sites’ DBA. Role names must be meaningful (the database or application name should be part
of the group or role name) without using reserved words. They may be a maximum of 30 characters
(uppercase letters, numbers, and underscore). Developers should strive to associate roles and their
privileges with the applications accessing the database. Each role should have only the privileges needed by
the application it supports.

As discussed in subsection 4.2.5.2, active database permissions should be limited to the minimum set
needed for the session in progress. Such permission sets are specific to an application’s connection to the
database. This means that each application requiring access to any database object must have a well-
defined database role that includes only the privileges needed by the application and that the role/group be
granted only to users who are authorized to run the application. In this case, it is the responsibility of the
database segment which supports an application’s software segment to create the specific database role for
the application and to connect to the DBA account (see the COEPromptPsswd API in Appendix C) to
assign the grants on the required objects to the newly created role. The DBA account has all necessary
privileges to assign grants on any object to any role.

A Shared database segment must provide generic “read-only” roles because of the dependencies of other
segments upon it; it may provide “read/write” roles. Developers may create more generic roles or groups
that consist of a set of privileges (such as read-only or read/write) on a group of objects (such as all of the
objects in a database or some subset of them). Such roles are usually created to provide read-only access to
an entire database for users of browsers or query builder tools. In this case, it is the responsibility of the
database segment that creates those objects to also create the generic role/group and assign the grants on the
required objects to the newly created role/group. Such generic roles are useful when widely used, large,
read-only databases such as the NID must be implemented. Such generic database roles should be used
with caution as they may grant applications more privileges than they really need. Generic database roles
should seldom, if ever, be used to grant write permissions. Database developers who implement generic
roles or groups must balance the advantages this type of role against the risks of unnecessary or excessive
privileges.

Consider the following example. A database segment named TEST has five tables: MASTER, DATA1,
DATA2, REF1, and REF2. Two applications, APP1 and APP2, are associated with the segment. The
segment should have two read/write roles, TEST_APP1_RW and TEST_APP2_RW, one to support each
application. It could also, optionally, have a read-only role, TEST_RO, for users of browser tools. If only
one read/write role were created, then users of APP1 could inadvertently modify data that should only be
changed using APP2 and vice versa.

When applications are not developed by the database segment developer, the application developers are
responsible for creating the roles required to access the database through their applications. The access
requirements for such roles must be defined by the application developers and included in the information

Runtime Environment

DII COE I&RTS: Rev 3.0 July 1997102

provided during Segment Registration as discussed in Chapter 3. The permissions required by application’s
database roles are subject to review by DISA and by the associated database segment’s sponsor. These
roles will be granted the privileges required to run the application. These privileges may include: delete,
insert, select, and update for tables and views; and execute for procedures, functions, and packages. Grants
of privileges to roles are discussed in the next section.

In order for the privileges on objects to be assigned to a role, the grantor must have permission to do so,
and those database objects must exist. When application developers define database roles to support their
applications and those roles are not part of the principal database segment, the roles and the grants that
enable them become part of a database segment that is dependent on the database segment or segments that
create the referenced objects. See subsection 4.3.7 for more information on inter-database dependencies.

Database roles shall not be granted to DBAs. Their administrative privileges already allow them to grant
roles to users without owning the roles. The database roles that are part of the COTS DBMS shall not be
altered by developers.

4.3.6 Grants

Grants are the permissions on database objects that allow users to access data they do not own. When a
database object is first created, the only account that can access its contents is the owner of that object.
Users must be explicitly granted permission to access an object. Privileges that can be granted include:
delete, insert, select, and update for tables and views; and execute for procedures, functions, and packages.
Privileges that should not be granted include index and alter for tables. Grants allow the DBA to administer
and the DBMS to enforce the discretionary access controls required. As discussed in the section on
database roles, developers should grant only the minimum set of permissions needed for the applications
that access their databases. Grants should be made to roles/groups and not to individual users.

Consider the previous example. APP1 is used to create and modify records in DATA1. It uses MASTER
and REF1 as lookup tables. APP2 has the same function for DATA2 using MASTER and REF2 as lookup
tables. The read/write role associated with APP1, TEST_APP1_RW, should be granted the select privilege
on MASTER and REF1, and select, insert, update and delete on DATA1. It should have no privileges on
REF2 or DATA2. TEST_APP2_RW, the read/write role for APP2, would have select on MASTER and
REF2; select, insert, update and delete on DATA2; and no privileges on DATA1 or REF2. TEST_RO, for
users of browser tools, would have the select privilege, only, on all five tables.

Granting data access to DBMS ‘PUBLIC’ users is prohibited. Granting data-access privileges to user
accounts with the ‘GRANT OPTION’ or granting administration privileges on database roles is prohibited.
Developers shall not make grants of application-level permissions to DBA accounts or to database roles
used for DBMS administration. Where segments’ applications or databases need special permissions on
DBMS objects (e.g. query Oracle’s ‘v$’ tables), the developer must request them from the DII COE Chief
Engineer. Such grants should be kept in a separate database definition script (to be executed by the DBA)
within the database segment that needs them.

4.3.7 Inter-Database Dependencies

Inter-database dependencies occur whenever database objects in a segment are dependent upon objects in
some other database segment. A database object is a dependent object if it references any other object(s) as
part of its definition. When a dependent object is created, all of its references to other objects must be
resolved. If it has dependencies on non-existent objects, the dependent object may not already have been
created or it may have to be validated when the objects it references come into existence. The creation of a
dependent object may also fail if its owner does not have the appropriate access to all referenced objects. If
the definition of any of the referenced objects is altered, the dependent object may not function properly or
may become invalid.

Runtime Environment

DII COE I&RTS: Rev 3.0 July 1997 103

Dependent objects that reference objects created, managed, and maintained by the same database segment
do not introduce inter-segment dependencies. In contrast, dependent objects that reference objects in other
segments do add complexity to the installation, de-installation, administration, and maintenance of a
database segment. Before using dependent objects, developers must balance the advantages of dependent
objects against the disadvantages of introducing segment dependencies.

Database segments with intersegment dependencies sometimes benefit from smaller storage and reduced
data redundancy. Using data objects that belong to other segments frees up the storage that would otherwise
be used for replicas of those objects. When replicated objects are eliminated, changes to those objects need
not be propagated across multiple database segments. At the same time, having only one copy of a widely
referenced table is likely to increase data quality and currency. Eliminating copies of data objects also
reduces the processing load on the SDS by eliminating duplicate updates when changes are made.

Such dependencies also affect the modularity and scaleability of the SDS. Dependent segments must be
installed after the database segment they reference. Further, as is the case with other segment types,
dependencies can easily propagate when placed on segments that are, in turn, dependent on other segments.
Furthermore, when inter-segment dependencies are defined, circular dependencies can be created. A
circular dependency exists when two segments depend on each other. In such cases, neither segment can be
installed because both require the other to be installed first. If a circular dependency cannot be resolved,
then the two segments may have to be merged into a single, larger segment or the dependent code can be
moved to a third segment. The dependency of one database segment on another segment’s data objects
could require the installation of multi-gigabyte databases so that one or two of their tables can be used by
some other segment.

Because of the tradeoffs involved in the employment of dependent objects, their use in DII systems is
subject to review and approval of the DII COE Chief Engineer.

Where inter-database dependencies are needed they shall be implemented such that the object(s) creating
the dependency are owned by the database segments that they belong to. This means that a foreign key
constraint belongs in the segment with the table it constrains, not in the segment with the table it references.
A post-update trigger added to a table belongs in the segment with that table, not in the segment of the table
it updates. Such dependencies may have to be placed in separate database segments that modify the
segment owning the object that creates the dependency. See Chapter 5 for more information on segmenting
databases that have dependencies. The Requires descriptor for such database segments must identify all
dependencies on other database segments. In addition, the Database descriptor must be used to identify
the data object(s) being referenced in other segments so that DISA can choose the most effective
segmentation strategy for databases that are widely used.

The following sections describe how developers should implement inter-segment dependencies that may
occur through the use of dependent objects, constraints, and database roles.

4.3.7.1 Data Objects

Database segments will have dependent data objects (tables or views) when their information needs can be
partially satisfied from tables or views contained in other database segments. If an external table fully
satisfies the information needs, it should be referenced directly. Developers may use a dependent view to
extract subsets of information from external tables or views or to change the presentation of information
(e.g. change units of measure or combine columns). Developers may use views to combine internal tables
with external objects to provide information supersets. Also, a table could reference an external object
either as a source of constraints or, through a trigger, as a provider of data.

Names of objects created in other schemas must identify the inter-database linkage. Otherwise they are
subject to the naming restrictions of their object type. Developers are responsible for ensuring that their
object’s names do not conflict with those already in the schema.

Runtime Environment

DII COE I&RTS: Rev 3.0 July 1997104

A table will be dependent on another database segment if its constraints reference objects in that other
segment or if it is populated or maintained using a trigger based on an external object. Developers may also
create a table that is a superset of an external object to avoid creating and maintaining partially redundant
objects. That table would then be combined with a view that joins it with the external object. Developers
must use an ‘outer join’ when defining such a view/table combination unless appropriate triggers are
created to prevent decoupling when updates occur to either the internal or external table.

A view that references a table (or view) outside its own segment is dependent on the database segment
containing the base table (or view). Once such a view has been created, it will become invalid and have to
be recreated if its base table (or view) is modified, renamed, or dropped. Any privileges or synonyms on the
invalid view also become invalid until it is recreated.

Developers shall not create indexes on objects in other database segments. Indexes have significant impact
on system performance. While they speed retrieval of records, indexes slow updates to tables. The effect of
uncontrolled index proliferation could dramatically damage the overall functioning of a DII system. If
developers desire indexes on tables in other database segments, they must request them from the SHADE
Chief Engineer. DISA will work with the other segments’ sponsors and developers to assess the effect of
additional indexes. If, based on overall requirements, the request is approved, the segment responsible for
the creation of the table will be modified to also create the index(es) required by other segments.

4.3.7.2 Rules in Other Databases

Database segments have dependent constraints or business rules when their integrity constraints or
operations involve objects from other segments. Such rules may include foreign keys that reference another
schema’s tables or triggers that propagate updates based on another schema’s transactions.

Any rules – whether they are constraints, triggers, or procedures – shall be created in the schema of the
object they are attached to. Names of rules created on other schemas must identify the inter-database
linkage as well as the rule’s function. Otherwise, they are subject to the naming restrictions of their object
type. Developers are responsible for ensuring that their rule names do not conflict with those already in
some other schema.

Developers may create constraints in their own schema that reference objects in other database segments.
They may not create or modify constraints on objects in other schemas. Such constraints could invalidate
otherwise legal updates to the other database. When additional constraints are needed on objects in other
database segments, developers must request them from the SHADE Chief Engineer. DISA will work with
the other segments’ sponsors and developers to assess the effect of these constraints. If, based on overall
requirements, the request is approved, the segment responsible for the creation of the table will be modified
to also create the constraint(s) required by other segments.

Developers may create triggers and stored procedures or functions on objects in other schemas as long as
they do not modify or update the other database’s information and do not change the constraints or business
rules of the other database. It is permissible, for example, to use a ‘post-insert’ trigger to copy data from an
external data object to one in the developer’s database segment. It is prohibited, by contrast, to use such a
trigger to change data in that other segment’s table.

Excessive use of triggers can result in complex interdependencies that may be difficult to maintain. When
implementing a specific function via triggers, developers must keep in mind that a database transaction will
rollback if execution of the associated trigger(s) is not successful. Trigger developers must implement
exceptions to handle errors or unexpected results that may occur during the execution of a trigger. These
exception handlers must ensure that a trigger fails ‘open’ and allows the owning segment’s database
transactions to complete regardless of the processing of the dependent trigger. If additional triggers and
stored procedures or functions are needed in other database segments, developers must request them from
the SHADE Chief Engineer. DISA will work with the other segments’ sponsors and developers to assess

Runtime Environment

DII COE I&RTS: Rev 3.0 July 1997 105

their effect. If, based on overall requirements, the request is approved, the segment owning the object
affected by these triggers, stored procedures, or functions will be modified to incorporate them.

4.3.7.3 Database Roles Spanning Multiple Databases

Developers may need to create roles whose permissions span multiple databases in order to take advantage
of their information and to correctly represent applications’ information needs. Since database roles
implicitly are created at the database server level, which segment they belong to is irrelevant. However, all
objects they reference must exist before the role may receive its grants. Accordingly, such roles shall be
part of a dependent database segment as discussed in Chapter 5. That segment is dependent on every
segment whose objects it references. It must list all of the segments under its Requires descriptor. See
Chapter 5 for more discussion of the Requires descriptor.

Runtime Environment

DII COE I&RTS: Rev 3.0 July 1997106

This page is intentionally blank.

5. Runtime Environment

This chapter describes the software configuration for the COE runtime environment. All software and data,
excepting low-level components of the COE kernel, are packaged as segments. A segment is a collection of
one or more software or data units most conveniently managed as a unit. Segments are constructed to keep
related units together so that functionality may be easily included or excluded.

There are six segment types corresponding to the different types of components that may be added to a
system:

1. COTS: A segment totally comprised of commercial off-the-shelf software.

2. Account Group: A segment that serves as a template for establishing a runtime environment for

individual operators.

3. Software: A collection of executables, shared libraries, and static data that extend the base

functionality and environment established by an account group.

4. Data: A segment composed of a collection of data files for use by the system or by a collection of

segments.

5. Database30: A segment that is to be installed on a database server under the management of the DBMS

and ownership of the DBA. A Database segment can only be installed on a database server and the
installation tools enforce this. Note that a database client application segment can be installed on any
platform and usually is a software segment type.

6. Patch: A segment containing a correction to apply to another segment whether data or software. The

corrections entail replacing one or more files.

In addition, segments may have attached characteristics, called segment attributes, which serve to further
define and classify the segment. There are six segment attributes31:

30 Database server segments are supported only on UNIX servers for this release. Database application
segments may be created for either the UNIX or NT environment.
31 Subsection 5.5.1.10 discusses how to indicate segment attributes with the SegName descriptor. Segment
attributes are noted by the appropriate parameter within the $TYPE keyword of the SegName descriptor.

Runtime Environment

DII COE I&RTS: Rev 3.0 July 1997 107

1. Aggregate: A collection of segments grouped together and managed as an indivisible unit. (This
implies that segments within an aggregate cannot be installed across separate platforms.) The segment
whose attribute is indicated as AGGREGATE is called the parent and is considered to be the “root”
segment. The parent segment name is the name presented to an operator as the name of the aggregate.
An aggregate can have only one parent segment.

2. Child: A segment that is part of an aggregate, but is subordinate to a single segment designated as the

parent. An aggregate can have multiple child segments.

3. COE Component: A segment that implements functionality contained within the COE, as opposed to

a mission-application segment.

4. DCE: A segment that implements either a DCE server or a DCE client application. The DCE attribute

must be specified for any segment which uses DCE segment descriptors.

5. Web: A segment that uses Web-based technology to create the application. A Web segment is either a

Web server, or a Web-application segment (e.g., a client application). A user requires a Web browser
to access Web-based segments.

6. Generic: A segment that is to be automatically added to all “usual” account groups (see

subsection 5.4.11). This feature allows a segment to participate in multiple account groups without the
need for the segment to explicitly name each account group.

Note: The attributes listed here are often used in the vernacular as if
they are segment types (discussion of an aggregate segment, a
COE-component segment, a Web segment, etc.). Technically
such usage is incorrect because these are attributes and not types.
When discussing segments by attribute, it is implicitly
understood that there is an underlying segment type, usually
software.

Segment installation is accomplished in a disciplined way through instructions contained in files provided
with each segment. These files are called segment descriptor files and are contained in a special
subdirectory, SegDescrip, called the segment descriptor subdirectory. Sections within the segment
descriptor files are called segment descriptors, segment descriptor sections, or just descriptors. The
segment descriptor files embody a technique that allows a segment to “self-describe” itself. That is, the
segment descriptor files contain pertinent information describing the segment, such as the segment name
and type. This information is used by other software in the COE and other segments that need to access
functionality contained within the segment. But the descriptive information is also used by people to aid in
the integration process, to aid in security analysis of the segment, or in configuration management.
Installation tools process the segment descriptor files to create a carefully controlled approach to
adding/deleting segments to/from the system. The format and contents of the segment descriptor files are
the central topic of this chapter.

Principles contained in this chapter are fundamental to the successful operation of the COE and achieving
DII compliance is largely determined by how well developers apply the details given in this chapter.
Appendix B summarizes the compliance requirements stated in this chapter into a series of checklists
organized by Category 1 compliance levels. Developers are required to adhere to the procedures described

The parent for the aggregate is designated by the AGGREGATE parameter. The Child attribute is indicated
by the CHILD parameter. COE Component is subdivided into the COE CHILD and COE PARENT
parameters. Similarly, the Web attributed is subdivided into the WEB APP and WEB SERVER parameters.
Finally, the Generic attribute is indicated by the GENERIC parameter.

Runtime Environment

DII COE I&RTS: Rev 3.0 July 1997108

herein to ensure that segments can be installed and removed correctly and that segments do not adversely
impact one another. Unless otherwise noted, all requirements apply to both UNIX and NT.

Note: In this chapter and throughout the I&RTS mention is made of
occasions when approval is required by a Chief Engineer. Unless
otherwise stated, this means the DII COE Chief Engineer for
COE-component segments and mission-application segments
that affect interoperability. All other references refer to the Chief
Engineer responsible for the mission-application segment (e.g.,
GCCS Chief Engineer, ECPN Chief Engineer). The Chief
Engineer is not necessarily a DISA engineer, and will not be for
the majority of the mission-application segments. Likewise, use
of the term SSA refers to the responsible SSA unless otherwise
qualified.

New and Obsolete Features

DII COE I&RTS: Rev 3.0 July 1997 109

5.1 New and Obsolete Features

This DII COE release includes a number of improvements over previous COE releases. A list of the more
significant improvements is provided here for developers who are already familiar with a previous DII
COE release.

The present release is backwards compatible with previous DII COE releases. Segments presently in use do
not require modification to work with the features described here. However, certain features from previous
JMCIS and GCCS COE releases are now obsolete and support for them will eventually be phased out.
Obsolete features are listed in a subsection below.

All of the features from the previous I&RTS have been preserved. Segments which have been migrated to
any version of the DII COE do not require additional work to be compatible with this issue of the I&RTS.
Compliance-level requirements have not been increased with this release, but the compliance criteria in
Appendix B have been reworded and reorganized for clarity.

Periodic modifications to the DII COE and the I&RTS are made for several reasons:

• to address non-UNIX environments,
• to allow extension to other problem domains,
• to provide support for new and emerging technologies,
• to generalize the COE concept,
• to improve site installation and administration of segments,
• to simplify or clarify certain segment descriptor files,
• to further reduce integration problems,
• to meet emerging mission requirements, and
• to apply lessons learned.

5.1.1 New Features

This subsection summarizes new features in this release that were not present in the previous I&RTS
release. Its purpose is to serve as a handy reference of new features for developers already using the DII
COE.

• Database applications are supported through SHADE. Descriptor information is provided in this
chapter.

• The concept of data scope (local, global, segment, etc.) is extended to encompass database scope (e.g.,

unique, shared, universal).

• The draft PC-based COE from the previous I&RTS release has been formalized and incorporated as

appropriate to this Chapter. It is further described in Chapter 6. Several new descriptors and keywords
have been added to support PC NT applications.

• Support is provided to add NT registry entries (see the Registry segment descriptor).

• Standard NT file extensions (e.g., .TXT, .EXE, and .BAT) are supported for segment descriptor files.

• Web-based applications are supported and are described further in Chapter 7. Descriptor information is

provided in this chapter.

New and Obsolete Features

DII COE I&RTS: Rev 3.0 July 1997110

• Guidance and support for DCE applications is provided. DCE-based applications are described further
in Chapter 8. A new set of descriptors (DCEClientDef and DCEServerDef), a DCE segment
attribute, and several new keywords are provided to describe DCE segments.32

• The $KEY keyword is added to enforce certain requests (such as installation with “root” privileges)

that require Chief Engineer approval.

• The location for shared libraries is now specified (i.e., in the segment’s bin subdirectory).

• Child components in an aggregate may now have a conditional load attribute. This is described more

fully below, but it allows a child segment to be loaded only if it represents a newer version than what is
already on disk.

• The concept of a generic segment is added. A generic segment is automatically made a member of

every account group, except those which are character-interface-based. The segment may also specify
account groups that it is to be excluded from.

• Support is added for three new types of processes: RunOnce, Privileged, and Periodic. Privileged is

available for UNIX only, but the other two are available for both UNIX and NT. RunOnce processes
are executed the first time the system is rebooted, but not thereafter. Privileged processes are those
which require “root” permissions to execute. Periodic processes are the UNIX equivalent of cron
processes, permitting a segment process to be run at specified intervals.

• Support is added to allow site installers to temporarily install a segment to test it before installing it on
the rest of the system.

• Support is provided to allow site administrators to create application servers that contain software for

multiple platform types. Support is included for “dynamic loading” of segments.

• Segments may add executables to run during the user profile creation/deletion just as with the account
creation/deletion process. Support is also added to allow executables to be run when a profile switch is
performed.

• The segment installer tool, COEInstaller, issues a warning to the operator performing the
installation if an attempt is made to load a segment that is an earlier version of one that is already on
the disk.

• The COEInstaller tool maintains a status log of segments as they are loaded and provides the
ability to print the status log. The status log may also include output from scripts (such as
PostInstall) that is normally sent to stdout or stderr.

• A $EQUIV keyword has been added to the SegName descriptor. In effect, this allows a segment to be
known by an alias.

• The Help descriptor has been added as a placeholder for future expansion. Its purpose is to identify

“help files” within the segment and their format (UNIX man page, HTML, etc.).

• A “partial segmentation” process is defined (see subsection 5.7) that provides the advantages of the
segmentation philosophy but allows a COTS vendor’s distribution media and approach to be utilized.

32 In this I&RTS release, DCE servers are available on UNIX platforms only. DCE client applications may
be on UNIX or NT platforms.

New and Obsolete Features

DII COE I&RTS: Rev 3.0 July 1997 111

5.1.2 Obsolete Features

The features listed below are being phased out because changes were required to extend the DII COE to
address the Joint community, to address problem domains other than command and control, and to extend
to non-UNIX platforms. The previous release of the I&RTS indicated most of these items as obsolete. They
are collected here as a ready reference. This release adds only one new requirement: usage of the $KEY
keyword. This keyword is used in instances where the I&RTS requires Chief Engineer authorization for
some requested feature, such as permission to create a COE-component segment. To preserve backwards
compatibility for existing features, VerifySeg only issues a warning if the $KEY keyword is missing. An
error is generated when the $KEY keyword is missing for new features. Developers should begin using the
$KEY keyword in all appropriate places because a future release will issue errors instead of warnings.

Support is still provided for each of the obsolete items listed below, but documentation for them has been
removed from this release of the I&RTS. Segment developers and program managers should upgrade33 to
the latest DII COE to ensure future compatibility. Support for the obsolete features may be removed from
the next release. The tool VerifySeg will issue warnings when run against old segments to identify
obsolete features.

• The MACHINE environment variable is now obsolete. The MACHINE_OS and MACHINE_CPU
environment variables should be used instead. Segment developers should not depend upon MACHINE
being defined.

• Individual segment descriptor files are now obsolete. The SegInfo descriptor file should be used

instead. It is divided into sections which correspond to the earlier individual descriptor files.
Conversion to SegInfo is required for Level 8 compliance.

• Subdirectories progs and libs are now obsolete. Subdirectories bin and lib should be used in

order to conform to conventional practice.

• The old format of the Data segment descriptor is obsolete. The size required is now specified in the

Hardware descriptor instead of the Data descriptor. Level 8 compliance requires uses of the new
format.

• Previous versions of the COE allowed DEINSTALL, PostInstall, and PreInstall to run with

root privileges. This capability is no longer the default. The $ROOT keyword must be used instead and
Chief Engineer approval is required to run with root privileges.

• Previous releases of the COE allowed a $PATH keyword in the Menus and ReqrdScripts

descriptors. This is now obsolete since the I&RTS specifies the location of where files must be located
relative to the segment’s home directory.

• Segment descriptors ModName and ModVerify have been replaced with SegName and

SegCheckSum respectively. The SegType descriptor file has also been replaced by the SegName
descriptor file.

• In earlier releases, the parent segment for a child had to be listed in the Requires descriptor. This is

no longer required because by virtue of naming the aggregate parent in SegName, there is an implied
dependency. Child segments use the $PARENT keyword to explicitly name the aggregate parent. The
parent uses the $CHILD keyword to explicitly name the children in the aggregate.

33 The obsolete features are primarily in the content and format of the descriptor files and should not require
any source code changes. The effort required to upgrade should be a matter of editing the segment
descriptor files and running VerifySeg. A tool, ConvertSeg, described in Appendix C is available to
automate the conversion to the extent possible.

New and Obsolete Features

DII COE I&RTS: Rev 3.0 July 1997112

• The $COMPONENT keyword is now obsolete and is replaced by the $CHILD keyword.

• Previous COE releases automatically provided a system menu bar. Applications must now use the

Executive Manager APIs to explicitly request a system menu bar.

Disk Directory Layout

DII COE I&RTS: Rev 3.0 July 1997 113

5.2 Disk Directory Layout

This subsection describes the COE approach for a standardized disk directory structure for all segments. A
standardized approach is required to prevent two segments from overwriting the same file, creating two
different files with the same name, or similar issues that frequently cause integration problems.
Unfortunately, such problems are often not discovered until the system is operational in the field.

In the COE approach, each segment is assigned its own unique, self-contained subdirectory. This
subdirectory is called the segment’s assigned directory or the segment’s home directory. The segment’s
assigned directory is established at segment registration time. It obviously must be unique among all
segments that are installed in an operational system. A segment is not allowed to directly modify any file or
resource it doesn’t “own” - that is, outside its assigned directory. Files outside a segment’s assigned
directory are called community files. COE tools coordinate modification of all community files at
installation time, while APIs to the segments which own the data are used at runtime.

Figure 5-1 shows the COE directory structure. The root-level directory for the COE is /h. Underneath /h,
disk space is organized into the following categories (note the close parallel to segment types):

COTS segment descriptors for installed COTS products

AcctGrps templates for establishing a runtime environment context

COE component segments constituting the COE

data subdirectory for shared (local and global) data files

Web subdirectory for Web-application segments

Segments one or more subdirectories for mission-application or other segments

USERS operator home directories with operator-specific items such as preferences

TOOLS collection of useful tools for the development environment

Web-application segments are collected into their own subdirectory to segregate them from all other types
of applications. This is to make it easier to identify and control them from a site-administration34

perspective. The Web-server segment is a COE-component segment and therefore is located under the COE
subdirectory. Web-application segments may or may not also be COE-component segments, but they are
placed under the Web subdirectory in either case. If they are also COE-component segments, the
specialized processing performed for all other COE-component segments is done as well. The installation
tools automatically place Web segments in their proper location.

Figure 5-1 does not show other important disk directories, such as the UNIX /etc directory. The /etc
directory is one of a family of related directories which contain UNIX system files. Other COTS products
may require specific directories as well, and there are other important system directories that are specified
to each operating system.

34 Web servers and mission-application segments will likely be placed behind a firewall to administratively
restrict platforms that outside users can gain access to.

Disk Directory Layout

DII COE I&RTS: Rev 3.0 July 1997114

...

OS
Extensions

RTE
Templates

COE
Component
Segments

shared
data

Mission Apps
and

Other Segments

Operators

Developers

Web
Applications

h

USERSJCALSGSORTSdataCOEAcctGrpsCOTS TOOLSWeb

Figure 5-1: DII COE Directory Structure

Developers may not directly alter or create files outside of their assigned segment directory. DII
compliance mandates strict adherence to this directive, with the following exceptions:

1. Temporary files may be placed in the operating system temporary35 directory. For UNIX, this is the
directory pointed to by TMPDIR (typically /tmp). For NT, use the applicable Windows API to locate
the temporary directory. However, disk space is limited so developers must use this temporary
directory sparingly and shall delete temporary files when an application is done.

2. Segments may place data files in the /h/data directory, and are required to do so for shared data (see

subsection 5.4.4).

3. Operator-specific data files shall be placed in subdirectories underneath /h/USERS (see

subsection 5.2.2).

4. Files may be added to the /h/TOOLS directory. This is a community directory for tools useful in the

development process. Segments shall not place any files in this directory which are required at runtime
since this directory is not installed at operational sites. This directory is described in subsection 5.2.3.

5. Segments may request that the COE tools modify community files during the installation process.

6. Segments may issue a request to modify a file to the segment which “owns” the file. This shall be done

through use of, and only through use of, published APIs.

As software is loaded onto the system, the /h disk partition may eventually run out of disk space. The COE
installation software will automatically create a symbolic link36 to preserve the logical structure shown in

35 For UNIX, the COE deletes all files in the temporary directory when the system is rebooted. This does
not occur for NT system. Developers should make it a habit to delete all temporary files when they are
finished and not rely upon the operating environment to delete them. This will ease porting problems and is
a matter of good programming practice.
36 Symbolic links are called shortcuts in NT. They are not identical concepts but are sufficiently similar for
this discussion.

Disk Directory Layout

DII COE I&RTS: Rev 3.0 July 1997 115

Figure 5-1, and delete the link when segments are removed. Hence, Figure 5-1 represents a logical view,
not a physical view, of file and directory locations. Due to the potential need to relocate segments at
installation time based on available disk space, DII-compliant segments must meet the following
requirements:

• Segments shall use relative pathnames instead of absolute pathnames.

• Segments which use symbolic links to point to files contained within the segment shall use relative

pathnames for the link.

• Segments which use symbolic links to community files may use absolute pathnames as long as (a) the

segment can determine the community file’s location at install time and (b) the segment can resolve
linking to a community file which may itself be a symbolic link.

• (UNIX) Segments which add an environment variable to the account group’s global runtime

environment for locating files within the segment shall use a single “home” environment variable.
Environment variables of this nature are normally required only when the segment files are to be
accessible by other segments. Addition of the “home” environment variable is done by the segment
installer through use of extension files and must not be done directly by the segment.

To illustrate the last requirement, consider a segment that provides a continuous readout of time-until-
impact for a missile. Assume the segment’s assigned directory is MissleTDA and it’s segment prefix is
MSLE. The ReqrdScripts segment descriptor (see subsection 5.5.2.22) is used to add the following to
the account group’s .cshrc file:

setenv MSLE_HOME /h/MissleTDA

MSLE_HOME is called the segment’s home environment variable. Static data within the segment can be
referenced by $MSLE_HOME/data while executables may be referenced by $MSLE_HOME/bin. This
technique of using relative pathnames means that segments can be easily relocated at development,
integration, or installation time by modifying a single environment variable.

The last requirement stated above does not apply to environment variables defined for use purely within the
software development environment. The COE requires that the runtime environment be separated from the
development environment. This is typically done by separating environment variables and other settings
into physically separate files. The development environment is not present during runtime for the
operational system.

Also carefully note that the last requirement stated above applies only to the account group’s global
runtime environment, not a local runtime environment. When a segment executable is launched, it inherits
the environment established by the account group template. It may then add to its local runtime
environment through techniques equivalent to the C putenv()function.

The time-to-impact example illustrates additional COE requirements regarding definition of a home
environment variable.

• A segment home environment variable shall point to the segment’s assigned directory, not a lower
level subdirectory (e.g., point to the directory /h/MissleTDA and not to the directory
/h/MissleTDA/Scripts).

• (UNIX) A segment home environment variable, if added to the global environment, shall be added

through an environment extension file (see ReqrdScripts).

• If a segment home environment variable is required, it shall be named segprefix_HOME, where

segprefix is the segment prefix. Segments which use the same segment prefix must ensure that only

Disk Directory Layout

DII COE I&RTS: Rev 3.0 July 1997116

one segment defines a home environment variable. This requirement assures that home environment
variables are uniquely named between segments.

• Segments shall not define a global environment variable that can be derived from an already-defined

environment variable. For example,

 setenv MSL_DATA $MSL_HOME/data

 is redundant and is therefore not allowed because the expression $MSL_HOME/data can be used

wherever $MSL_DATA can be used.

• Segments shall not use the “~” character (or NT equivalent) to specify relative pathnames in the
runtime environment, whether to define a home environment variable or any other environment
variable.

UNIX allows statements of the form

source ~/Scripts/.cshrc.tst

in .cshrc, .login, and similar scripts. The “~” character is substituted at run time with the name of the
home login directory (as defined in the /etc/passwd file). Suppose this statement were contained in a
.cshrc file and, to prevent making duplicate copies and managing updates to this file, another segment
wishes to use the UNIX source command to include this .cshrc file in its own environment. Any
segment wishing to source the example .cshrc file must duplicate the same disk directory path structure
(e.g., must have a Scripts subdirectory underneath the home login directory) and must have a file called
.cshrc.tst underneath the Scripts subdirectory. This approach is problematic in the runtime
environment because the login home directory is different for every operator, and leads to difficulties in
sharing environment settings.

Note: Developers should minimize the use of environment variables
whenever possible. The amount of memory the operating system
makes available to store environment variables is limited and is
therefore a scare system resource. Also, developers should bear
in mind that environment variables with shorter names require
less memory to store than environment variables with longer
names.

5.2.1 Segment Subdirectories

DII compliance mandates specific subdirectories and files underneath a segment directory. These are
shown in Figure 5-2 for a general segment. The precise subdirectories and files required depend upon the
segment type. For example, a Scripts subdirectory is required for account group segments. The
Scripts subdirectory on a UNIX system will normally contain, as a minimum, .cshrc and .login
scripts. These serve as a template for establishing a basic runtime environment. For software segments, the
Scripts subdirectory contains environment extension files.

Some of the subdirectories shown in Figure 5-2 are required only for segment submission and are not
delivered to an operational site. Runtime subdirectories normally required are as follows:

data subdirectory for static data items, such as menu items or help files, that are
unique to the segment but will be the same for all users on all platforms

bin executable programs and shared libraries for the segment

Disk Directory Layout

DII COE I&RTS: Rev 3.0 July 1997 117

Scripts directory containing script files (This is usually not required for NT platforms
but, if required, the directory contains “batch” files.)

SegDescrip directory containing segment descriptor files.

* Required for segments with published APIs
+ Required for segment submission
1 For Database segments only
2 Recommended location for source code during development,

Required location for source code delivered to DISA.

h

IntgNotes
VSOutput

Seg

ScriptsSegDescrip bindata *man *include *lib +Integ

TestSuite

1install 1DBS_files 2src

Icons Menus fonts app-defaultskeytab HelpINI

Figure 5-2: Segment Directory Structure

The descriptor directory SegDescrip is always required for every segment. Its contents are defined in
later subsections. Segment developers may use arbitrary disk file structures during the development phase,
but segments shall conform to the structure shown prior to submitting a segment to DISA. It is a violation
of the COE to use a different subdirectory name to fulfill the same purpose as any subdirectory shown as a
required subdirectory, or to use a different runtime directory structure than that shown in Figure 5-2.

For example, the subdirectory src is a recommended directory for the location of source code during
software development. Developers are free to use this name, or any other structure convenient for their
development practices. They must, however, use this directory name for source code delivered to the DISA
SSA. bin is a required subdirectory and shall not be used for any purpose other than that stated in the
I&RTS.

The distinction between the Scripts subdirectory and the bin subdirectory is subtle. Files in the
Scripts subdirectory are used to establish attributes of the runtime environment. Scripts are used here in
the sense of traditional UNIX, X Windows, or Motif files (.cshrc, .login, etc.) that are usually
referred to only during the login process or in the establishment of a separate runtime session. Files of this
nature are located in the Scripts subdirectory. Executable files may be created as a result of compiling a
program or may be written as a shell. Files of this nature implement executable features of the segment and
are located in the bin subdirectory.

Disk Directory Layout

DII COE I&RTS: Rev 3.0 July 1997118

Subdirectories install and DBS_files are only used for database segments. Their use is described in
subsection 5.4.5

Subdirectories underneath data depend upon whether or not the segment has menu or icon files, uses DCE
(subdirectory keytab), is NT-based and uses initialization files (subdirectory INI), or needs additional
fonts or app-defaults. During segment installation (for UNIX platforms) special processing is performed on
files within the app-defaults and fonts subdirectories. See subsection 5.4.4 for more details. See
Chapter 6 for information on using “.ini” files on NT platforms.

The remaining subdirectories shown in Figure 5-2, except for src, are required in order to submit a
segment to DISA as follows:

include subdirectory containing C/C++ header files or Ada package definition files for public
APIs

lib subdirectory containing object code libraries for public APIs

man subdirectory containing UNIX “man” pages for public APIs

Integ subdirectory containing items required in the integration process

Segments which do not contain public APIs need not submit include, lib, or man subdirectories. For
those segments with public APIs, private APIs are not allowed in the include subdirectory, nor are
private libraries allowed in the lib subdirectory.

The Integ subdirectory serves as a convenient repository for information that needs to be communicated
from the developer to the integrator. The file VSOutput is required for all segments submitted. The
subdirectory TestSuite is required for all segments which submit public APIs and is to contain source
code for a program(s) which exercises all APIs submitted. The file IntgNotes is required for all
segments submitted and contains a brief description of why the segment is being submitted (new features,
bug fixes, etc.). It also contains any special instructions that need to be communicated to the integrator for
proper segment integration and installation.

5.2.2 USERS Subdirectories

The COE establishes individual operator login accounts and provides a separate subdirectory on the disk
for storing operator-specific data items. The structure underneath this directory is created and managed
automatically as accounts are added and deleted by the Security Administrator software. Developers who
require access to any file maintained here (last profile selected, location of operator preferences files, etc.)
shall use COE-provided APIs to access them and not rely upon a particular directory or file structure.

All users with valid accounts will have a subdirectory underneath /h/USERS. The subdirectory name will
have the same name as the login account name. As shown in Figure 5-3, operator accounts may be global
or local in scope. A local account is platform-specific, whereas global accounts are available from any
platform on the LAN.

Disk Directory Layout

DII COE I&RTS: Rev 3.0 July 1997 119

USERS

local global

Oper1
Oper2

Oper3

OperA
OperB

OperC

h

datadata

PrefsPrefs

Figure 5-3: Operator Directory Structure

The subdirectory Prefs underneath the operator’s data directory is used to store segment-specific operator
preferences. DII compliance requires that segments store all operator preference data here. A segment is
responsible for creating its own subdirectory (with the same name as the segment’s assigned directory) and
any required files when the segment first references the preferences data. The exact pathname for the
Prefs subdirectory will change each time a different operator logs in, thus segment software shall use
functions from the Preferences Toolkit APIs to retrieve the correct pathname for the currently active
operator account.

Account group segments define the environment variables USER_HOME and USER_DATA to point to the
correct operator directories. For the example in Figure 5-3, the following assignments would be made when
the user whose login account name is OperA logs in:

USER_HOME = /h/USERS/global/OperA
USER_DATA = /h/USERS/global/OperA/data

Note that USER_HOME is not defined to be /h/USERS/global/OperA/Scripts which is the login
home directory.

Segments, such as the Executive Manager, may need to reference menu and icon files for the operator’s
currently-defined profile. However, the directory location for these files is profile-dependent and will
change during a login session if the operator changes profiles. Segments must use functions contained in
the Preferences Toolkit APIs to determine the current profile. The environment variable USER_PROFILE
is set by the account group segment during login, but segments must use APIs from the Preferences Toolkit
to access files or directories related to individual operators, or to determine the current user profile.

DII compliance requires adherence to the following:

• Segments shall create subdirectories as needed under the operator’s Prefs subdirectory for storing
operator-specific data.

• Segments must work in an environment in which accounts are created and deleted. This requires that a

segment create and initialize missing operator-specific data files.

Disk Directory Layout

DII COE I&RTS: Rev 3.0 July 1997120

• Account group segments shall set the environment variables USER_HOME, USER_DATA, and
USER_PROFILE. (See footnote below. Account groups must still set USER_PROFILE in the interim
to support legacy usage.) No other segment shall set or alter these environment variables.

• Segments shall determine the operator’s directory and profile exclusively through the Preferences

Toolkit APIs or the environment variables USER_HOME, USER_DATA, and USER_PROFILE.37

5.2.3 Developer Subdirectories

Software for the runtime environment is obtained by loading the desired mission-application segments and
the required COE components. But the development environment is provided separately as a Developer’s
Toolkit because it is not delivered to, nor required at, an operational site. The Developer’s Toolkit includes
object code libraries, header files which define the public APIs, and various tools. By convention, tools are
loaded underneath the /h/TOOLS subdirectory shown in Figure 5-1. This serves as a convenient directory
for software contributed by the community for general development use.

5.2.4 Test Installation Subdirectories

The COE provides the ability for sites to temporarily install a segment on a platform to test it before putting
it on other platforms on the LAN. This is accomplished by the COETestInstall tool, while removal of
the test segment is accomplished by the COETestRemove tool (see Appendix C). These tools create
temporary directories for storing the test segment and, if the segment already exists, COETestInstall
moves the old segment to a safe location so that it can be restored by COETestRemove once the test is
completed. Developers do not need to do anything special to their segment to enable this capability. It is
handled automatically by the tools.

5.2.5 Application-Server Subdirectories

To assist site administrators, the COE provides support for creating application servers.38 This is done by
the tools COECreateAS, COEConnectAS, and COERemoveAS (see Appendix C). The COECreateAS
tool allows segments to be loaded onto a platform that is to be configured as an application server. The
application server may contain segments for mixed hardware types (e.g., Hewlett Packard [HP], Solaris,
DEC, International Business Machines [IBM]). Figure 5-4 shows the directory structure maintained on the
application server.

The tool COERemoveAS removes segments from an application sever. The tool COEConnectAS
connects a client platform to an application sever. It also allows “dynamic” loading of segments as
explained in Appendix C.

The COE does not support installation of multiple versions on the application server, for the same platform
and operating system version. This could otherwise lead to problems if two different versions of a segment
for the same platform type were executed at the same time. Temporary testing of a new segment version
must be performed using the COETestInstall and COETestRemove tools described in
subsection 5.2.4

Developers do not need to do anything special to their segments to enable the application-server capability.
It is handled automatically by the tools.

37 USER_PROFILE is preserved for backwards compatibility only. The COE allows there to be multiple
active profiles so that an environment variable may not be the most appropriate way to determine the
current user profile. Developers must not directly access this environment variable because its use may be
phased out in a future release.
38 Application servers are supported for UNIX platforms only in this I&RTS release.

Disk Directory Layout

DII COE I&RTS: Rev 3.0 July 1997 121

h

AppsSvr

Seg1dataCOEAcctGrpsCOTS ...Seg2

Platform4
Platform3

Platform2
Platform1

Figure 5-4: Applications Server

Segment Prefixes and Reserved Symbols

DII COE I&RTS: Rev 3.0 July 1997122

5.3 Segment Prefixes and Reserved Symbols

Each segment is assigned a unique subdirectory underneath /h called the segment’s assigned directory.
The assigned directory serves to uniquely identify each segment, but it is too cumbersome for use in
naming public symbols. Therefore, each segment is also assigned a 1-6 character alphanumeric string
called the segment prefix. The segment prefix is used for naming environment variables and things such as
public APIs and public libraries where naming conflicts with other segments must be avoided. All
segments shall prefix their environment variables with segprefix_ where segprefix is the segment’s
assigned prefix. For example, the Security Administrator account group segment is assigned the segment
prefix SSO. All environment variables for this segment are therefore prefixed with the string “SSO_”.

The segment prefix is also used to uniquely name executables and shared libraries. All COE-component
segments shall use the segment prefix to name executables and it is strongly recommended that all
segments follow the same convention. For example, a proper executable for the Security Administrator
account group is SSOSetClassif. A properly named shared library would be SSOSampleLib.lib.
This approach simplifies the task of determining the files that go with each segment and reduces the
probability of naming conflicts.

Note: Use the segment prefix inside application code in situations
where it is important to distinguish one segment from another.
For example, when audit information is written to the security
audit log, the segment prefix is also written to the audit log to
allow determination of which application module generated the
audited event. The same advice applies to all audit logs,
including those maintained by the operating system or a DBMS.

It is sometimes convenient for segments to share the same segment prefix. This is true for aggregate
segments or for segments produced by the same contractor. The COE allows segments to share the same
segment prefix; however, the burden for avoiding naming conflicts is placed on the segment developer.

Note: This means that segment prefixes are not guaranteed to be unique
and therefore cannot be used to uniquely identify a segment.
Each segment shall have a uniquely assigned directory and
segment name. Therefore, the name or directory in combination
can be used to uniquely identify a segment. There are situations
where it is more convenient to specify a segment’s assigned
directory rather than its name, such as in COEFindSeg, because
the directory name is typically shorter than the segment name
and this fact can be useful in speeding up character string
comparisons in segment searches. Furthermore, because the
segment directory will not have embedded blanks but the
segment name may, the segment name will not necessarily be the
same as the assigned directory name.

The segment prefixes shown in Table 5-1 are reserved.

Segment Prefixes and Reserved Symbols

DII COE I&RTS: Rev 3.0 July 1997 123

Segment Prefix Applicability
CBIF Character-Based I/F account group segment
CDE Common Desktop Environment segment
COE Common Operating Environment segment
DBA Database Administrator account group segment
DCE Distributed computing environment segment
DII Defense Information Infrastructure segment
ECEDI Electronic Commerce/Electronic Data Interchange segment
ECPN Electronic Commerce Processing Node segment
EM Executive Manager segment
GCCS Global Command and Control System segment
GCSS Global Command Support System segment
INFRMX Informix COTS segment
JCALS Joint Computer-Aided Acquisition and Logistics Support

segment
JMCIS Joint Maritime Command Information System segment
JMTK Joint Mapping Toolkit segment
MOTIF Motif
NIPS Navy NIPS segment
NT Generic NT segment
ORACLE Oracle COTS segment
OSS Navy OSS segment
SA System Administrator account group segment
SCO SCO-UNIX segment
SSO Security Administrator account group segment
SYBASE Sybase COTS segment
TIMS Navy TIMS segment
UB Navy Unified Build segment
UNIX UNIX operating system
USER prefix for operator-specific items
WIN generic Windows segment
WIN95 Windows 95 segment
WINNT Windows NT segment for 80x86 platforms
XWIN X Windows

Table 5-1: Reserved Segment Prefixes

The COE sets five environment variables that must not be confused with the USER prefix or the segment
home environment variable.

• The HOME environment variable is set by the operating system to be the login directory; that is, the
login directory as contained in the UNIX /etc/passwd file. This will normally point to a Scripts
subdirectory while the segment “home” environment variable (segprefix_HOME) is one level up
from HOME.

• The USER environment variable is set by the operating system to be the login account name and does

not refer to a directory as does the USER prefix. Thus, USER_HOME will be /h/USERS/$USER.

Segment Prefixes and Reserved Symbols

DII COE I&RTS: Rev 3.0 July 1997124

• The environment variables LOG_NAME, LOGNAME, and LOGIN_NAME are equivalent to the USER
environment variable39, but are not always present on every system.

The COE also includes a number of predefined environment variables that are required by UNIX, NT,
X Windows, and other COTS software. These environment variables are either set automatically by the
operating system or they must be set by an account group segment. Other segments shall not alter these
environment variables except as permitted by environment extension files (e.g., extending the path
environment variable).

Table 5-2 lists various important environment variables that are set by the applicable account group, the
parent COE-component segment, or the COE installation tools.

The COE sets environment variables MACHINE_CPU and MACHINE_OS to define the hardware and
operating system being used. This allows scripts and descriptors to perform operations that are dependent
on the hardware or operating system. Table 5-340 lists the possible values set by the COE which either may
be used as constants in #ifdef constructs within descriptor files or as possible values for the appropriate
environment variable (e.g., MACHINE_CPU).

Note that the environment variables (e.g., MACHINE_CPU) will have one and only one value, but several
constants may be defined for use within the descriptor files. For example, if the hardware platform is an
HP715 running HP-UX 9.01, the MACHINE_CPU environment variable will be set to HP715,
MACHINE_OS will be set to HPUX, while the constants HP, HP715, HPUX will be defined for use in
descriptors.

39 USER is preserved for backwards compatibility with legacy pre-POSIX systems. LOGNAME is the proper
POSIX equivalent.
40 This list of constants will be updated as new platforms are supported. Refer to the DII COE Release
Notes and Version Description documents for details as new platforms are supported.

Segment Prefixes and Reserved Symbols

DII COE I&RTS: Rev 3.0 July 1997 125

Environment Variable Usage
COE_SYS_NAME string containing system name (e.g., “GCCS”)
+
COE_TMPSPACE

location of temporary space

*
DATA_DIR

/h/data

DISPLAY current display surface (UNIX only)
HOME user’s login directory
+
INSTALL_DIR

absolute pathname to where segment was installed

*
LD_LIBRARY_PATH

default location of shared X and Motif libraries (UNIX
only)

*
LOGNAME

user’s login account name

*
LOG_NAME

user’s login account name

*
LOGIN_NAME

user’s login account name

*
MACHINE_CPU

CPU type derived from uname -m

*
MACHINE_OS

Operating system derived from uname -s -r

path list of paths to search to find an executable
SHELL shell used (e.g., /bin/csh) (UNIX only)
+
SYSTEM_ROOT absolute pathname to where Windows is installed

(applicable to PC-based COE only)
TERM terminal type (UNIX only)
*
TMPDIR

location of the system-defined temporary directory

*
TZ

time zone information (UNIX only)

USER user’s login account name
USER_DATA user’s data directory under /h/USERS/local or

/h/USERS/global
USER_HOME user’s home directory under /h/USERS/local or

/h/USERS/global
USER_PROFILE user’s current profile under

/h/USERS/local/Profiles or
/h/USERS/global/Profiles

*
XAPPLRESDIR /h/data/app-defaults (UNIX only)

*
XENVIRONMENT /h/data/app-defaults/COEBaseEnv (UNIX only)

*
XFONTSDIR

/h/data/fonts (UNIX only)

Legend: * Environment variables set by the parent COE-component segment.
+ Environment variables set by the COE installation tools. These are defined only at

installation time.
All remaining environment variables are set by the applicable account group
segment.

Table 5-2: COE-Related Environment Variables

Segment Prefixes and Reserved Symbols

DII COE I&RTS: Rev 3.0 July 1997126

MACHINE_CPU Environment Variable
Constant Platforms for Which Defined
DEC DEC Alpha platforms
HP700 HP 700 series platforms
HP712 HP712 platforms
HP715 HP 715 platforms
HP750 HP 750 platforms
HP755 HP 755 platforms
IBM IBM RISC 6000 platforms and PowerPC
PC386 Intel 80386 platforms
PC486 Intel 80486 platforms
PENTIUM Intel Pentium platforms
SGI Silicon Graphics platforms
SPARC Sun Sparc platforms
SUN4 Sun 4 platforms

MACHINE_OS Environment Variable
Constant Platforms for Which Defined
AIX IBM RISC 6000 platforms and PowerPC
OSF1 DEC Alpha platforms
HPUX all HP-UX platforms
IRIX Silicon Graphics platforms
NT all NT platforms
SOL all Solaris platforms
WIN95 all Windows 95 platforms

Miscellaneous Constants
Constant Platform for Which Defined
DEC all DEC platforms, regardless of OS
HP all HP platforms, regardless of OS
IBM all IBM platforms, regardless of OS
PC all 80x86 platforms, regardless of OS
SGI all SGI platforms, regardless of OS
SPARC all Sun Sparc platforms, regardless of OS

Table 5-3: Platform and Operating System Constants

Segment Types and Attributes

DII COE I&RTS: Rev 3.0 July 1997 127

5.4 Segment Types and Attributes

Segment types and attributes were briefly introduced at the beginning of this chapter. The present
subsection describes segment types and attributes in more detail. Segments are the cornerstone of the COE
approach, and proper determination of their type and associated attributes determines how the COE handles
them. Developers have considerable freedom in building segments; however, there are some important
considerations regarding them.

• Creation of an account group segment requires prior approval by the Chief Engineer. Most account
groups are predefined by the COE itself to establish DII-compliant runtime environments. System
designers will typically add an operator account group that establishes the basic runtime environment
for their system. Other developers will not normally create account group segments.

• Creation of a COE-component segment requires prior approval by the DII COE Chief Engineer.

• All COTS products shall be packaged as individual COTS segments, unless approved by the DII COE

Chief Engineer. This requirement is mandated to make it easier to handle COTS licenses, and to ensure
that a single version of a COTS product is in use. Dependencies on COTS product versions must be
identified and coordinated with DISA to ensure that the proper version is supported by the COE.

• Segments shall not modify any file that lies outside the segment’s directory. Community files may be

modified only through public APIs or through requests made to the COE installation tools.

Segment types are identified by the $TYPE keyword in the SegName descriptor. Segment attributes are
also specified in the $TYPE keyword by the presence of an optional attribute parameter. See
subsection 5.5.1.10 for details.

5.4.1 COTS Segment Types

The COTS segment type is used to describe the installation of COTS products. It is preferable to structure a
COTS product as a software segment, if at all possible, because it provides more control over the
installation and placement of the COTS product. However, this is sometimes not possible because where
COTS products will be loaded, what environment extensions are required, etc. are often very vendor-
specific.

The COE must retain segment information about all segments, including COTS products. The segment
descriptor information for all COTS segments is located underneath the directory /h/COTS as shown in
Figure 5-5. COTS software is not necessarily actually stored in the directory /h/COTS. Frequently only
the segment descriptor information is stored there because the actual location of COTS products is often
spread across several subdirectories (such as /usr, /usr/lib/X11, and /etc).

Using UNIX as the example, Figure 5-5 shows the segment descriptor information for the operating system
(UNIX), the X Windows environment (XWindows), the Motif window manager and libraries (Motif),
and the Common Desktop Environment software (CDE). These four subdirectories, along with the actual
COTS software, are loaded with the COE kernel. The example in Figure 5-5 also shows that the DCE
COTS product has been installed.

Segment Types and Attributes

DII COE I&RTS: Rev 3.0 July 1997128

COTS

h

UNIX XWindows Motif CDEDCE

SegDescrip SegDescripSegDescrip SegDescripSegDescrip

Figure 5-5: COTS Directory Structure

COTS products sometimes have very specific requirements as to the location of files within the product.
The general approach to such segments is to create a temporary segment structure in which to store the
COTS product, copy the COTS files to their required location during installation, and then copy the
segment descriptor information to /h/COTS. It is the responsibility of the PostInstall script to copy
the COTS files to their appropriate directories and to perform any other required initialization steps. The
installation software handles moving the segment descriptor information to the standard location,
/h/COTS.

For example, assume a COTS product called SampleCots is to be installed which requires loading a
series of files into /etc (files f1, f2, and f3), /usr/local (files f4 and f5), and /usr/lib (files
f6, f7, f8, and f9). A segment directory structure can be set up in whatever manner is most convenient.
Figure 5-6 shows one possible solution. The installation software will load the segment SampleCots
wherever there is room on the disk and will set the environment variable INSTALL_DIR to the absolute
pathname to where SampleCots was loaded. The PostInstall script for this example must
recursively copy the subdirectories etc and usr from INSTALL_DIR to /etc and /usr. The
installation software will copy the segment descriptor information to /h/COTS/SampleCots and then
delete all files underneath INSTALL_DIR.

As an alternative, the COE allows a segment to specify exactly where it must be loaded. This is done with
the $HOME_DIR directive described in subsection 5.5. This reduces the need to copy files from one
directory to another, and eliminates the temporary disk space required during installation (e.g., to
temporarily store the segment when it is read from tape, then copy it to its new location, then delete the
temporary location).

SampleCots

etc usr SegDescrip

liblocal

f6
f7
f8
f9

f4
f5

f1
f2
f3

Segment Types and Attributes

DII COE I&RTS: Rev 3.0 July 1997 129

Figure 5-6: Example COTS Segment Structure

The segment descriptor FilesList (see subsection 5.5.2.13) is used to document where a COTS product
was installed. The FilesList descriptor for this example is

$PATH:/etc
$FILES
f1
f2
f3
$PATH:/usr
$FILES
local/f4
local/f5
lib/f6
lib/f7
lib/f8
lib/f9

To summarize the COTS segment type:

• COTS products should be installed as a software segment type if possible.

• The COTS segment’s PostInstall script is responsible for copying files to their required location.

The PostInstall script must ensure that enough space exists.

• The installation software places the segment descriptor information underneath /h/COTS/SegDir

where SegDir is the segment directory name chosen for the temporary segment structure
(SampleCots in the example above).

• The COTS segment’s PostInstall is responsible for deleting the temporary segment structure after

the installation is complete.

• COTS segments shall document what files are loaded and their location in the FilesList segment

descriptor.

• When practical, COTS segments should make symbolic links to the appropriate location for their
software instead of copying the files and directories. This allows the installation software to make
more effective use of the disk space available and avoids the problem of running out of disk space for
such common directories as /usr and /etc.

Note: Developers should normally not include the vendor name in the
segment name because this makes the segment vendor-specific.
Other segments which then depend upon the COTS product are
affected because they then become vendor-specific as well. For
example, a segment name such as “DCE” is preferable to
“Vendor A DCE” because segments may specify a dependency
on a segment whose name is “DCE” rather than “Vendor A
DCE.” This is especially the case when the COTS product is the
implementation of an industry standard. However, it is
sometimes advisable to include the vendor name because the

Segment Types and Attributes

DII COE I&RTS: Rev 3.0 July 1997130

product truly is vendor-proprietary. This is typically the case
with an RDBMS.

5.4.2 Account Group Segment Types

An account group segment is a template for establishing a basic runtime environment context that other
segments may extend in a controlled fashion. An account group segment determines

• the processes to launch,
• the order in which to launch processes, and
• the required environment script files (.cshrc, .login, etc.).

Account groups may also contain executables and data in the subdirectories identified in Figure 5-2.

The COE provides several predefined account groups. They are located underneath /h/AcctGrps shown
in Figure 5-1. Important predefined account groups include the following:

CharIF account group for character-based interfaces

DBAdm account group for database administrators

SecAdm account group for security administrators

SysAdm account group for system administrators

In addition to these account groups, COE-based system designers will generally create their own account
group for normal operator accounts (GCCS for the Global Command and Control System, GCSS for the
Global Command Support System, ECPN for the Electronic Commerce Processing Node system, etc.).
They will include CharIF if the system supports a character-based interface and may include other
account groups to suit system mission requirements.

Figure 5-7 shows how the UNIX System Administrator account group is structured. It demonstrates what
account groups are for and how they are used in building a COE-based system.

bin Subdirectory

Account groups utilize COE executables, located underneath /h/COE/bin, but will usually include
additional account group specific programs. These are located in the account group’s bin subdirectory. DII
compliance requires that executables within this subdirectory use the segment prefix to avoid potential
naming conflicts with other executables.

Segment Types and Attributes

DII COE I&RTS: Rev 3.0 July 1997 131

AcctGrps

h

Scripts bin dataSegDescrip

.cshrc

.cshrc.dev

.cshrc.SA

.login
RunSA

Menus Icons Help

SysAdm

Figure 5-7: Example Account Group Directory Structure

data Subdirectory

Segment data specific to the System Administrator account group is located in the data subdirectory. The
Menus subdirectory contains menu files that have menu entries for all options available from the basic
System Administrator application. The segment installation software may modify files contained here to
add other menu options. Account group menu files are used as templates from which profiles are created by
including or excluding desired menu items and execution permissions. The Icons subdirectory is
analogous, but defines icons for use by the desktop for launching applications.

Help files are located underneath the data/Help subdirectory and identified through the Help segment
descriptor. Refer to subsection 5.5.2.15 for more details on this segment descriptor.

Scripts Subdirectory

A UNIX account group segment will usually contain at least the following two scripts to establish the
runtime environment:

.cshrc define environment variables

.login define terminal characteristics

Precise contents of these files is application-dependent. Other segments may be loaded to extend the
environment established by the account group. This is done through environment extension files. DII-
compliant account group segments shall name environment extension files in the form

scriptname.segprefix

where scriptname is the environment file to be extended and segprefix is the segment prefix. For the
example shown in Figure 5-7, the environment extension files are:

.cshrc.SA extensions to the .cshrc file

.login.SA extensions to the .login file

Segment Types and Attributes

DII COE I&RTS: Rev 3.0 July 1997132

Extension of the .login file is seldom required.

Environment extension files permit COE installation software to provide segment-specific environment
modifications. A segment uses the descriptor ReqrdScripts (see subsection 5.5.2.22) to indicate which
environment file to extend and the installation tools modify the proper file within the account group
segment.

For example, suppose the installation tools have loaded a segment underneath /h/SAOpt and the SAOpt
segment has an environment extension file named .cshrc.SAOpt in the segment’s Scripts
subdirectory. The installation tools will include the new environment settings by inserting the following
statements in the account group’s file .cshrc.SA:

if (-e /h/SAOpt/Scripts/.cshrc.SAOpt) then
source /h/SAOpt/Scripts/.cshrc.SAOpt

endif

The installation tools automatically remove these statements from .cshrc.SA if the segment SAOpt is
deleted.

Account group segment developers shall ensure that environment extension files are included and
accounted for in the appropriate account group segment’s scripts. For example, the .cshrc file shown in
Figure 5-7 includes the following statements

if (-e $SA_HOME/Scripts/.cshrc.SA) then
source $SA_HOME/Scripts/.cshrc.SA

endif

to account for .cshrc extensions. Also note that the source command shall be of the form

source $SA_HOME/Scripts/.cshrc.SA

rather than

source $USER_HOME/Scripts/.cshrc.SA

The COE-mandated form ensures a single copy of the environment extension file, updated and maintained
by the installation software.

The file .cshrc.dev shown in Figure 5-7 relates to the software development environment. It is not a
required file, but is described here as an example of how the development environment can be
accommodated, yet kept separate from the runtime environment. In the example shown, developer
preferences such as alias commands are included in .cshrc.dev. These preferences must not be included
as part of the runtime environment. A technique such as

if ($?DEVELOPER) then
source $SA_HOME/Scripts/.cshrc.dev

endif

within the .cshrc file is required to achieve separation of the development environment from the runtime
environment. This technique will not work for certain files, such as .mwmrc, because they do not support
conditional statements.

Account groups must include the base environment established by the COE. Subsection 5.4.8 describes the
COE-component segments in more detail. The .cshrc file in Figure 5-7 includes the base COE
environment with the statements

Segment Types and Attributes

DII COE I&RTS: Rev 3.0 July 1997 133

if (-e /h/COE/Scripts/.cshrc.COE) then
source /h/COE/Scripts/.cshrc.COE

endif

The remaining files in Figure 5-7 contain similar statements to include other COE environmental settings.

Account groups must also provide a script or program which launches the application. This is the file
named RunSA shown in Figure 5-7. DII compliance requires this file to be located underneath the
Scripts subdirectory.41

To summarize compliance requirements for account groups:

• Account group segments shall provide environment extension files of the form
scriptpname.segprefix, where scriptname is the name of the script which sets the
environment, and segprefix is the account group’s segment prefix. This must be done for any files that
other segments may extend (e.g., .cshrc.SA for the SysAdm account group).

• Account group executables shall use the segment prefix to avoid naming conflicts.

• Account group segments shall not include the developer environment as part of the runtime

environment.

• Account group segments shall provide a single program or script with the name Runsegprefix,

where segprefix is the segment prefix, to initiate execution of the account group’s application. This
executable shall be located in the account group segment’s Scripts subdirectory.

• Account group segments shall automatically include environment settings established in

/h/COE/Scripts.

• Segment developers shall not modify account group files except through use of the installation

software.

• Segment developers shall not override environmental settings established by the account group.

Segments may use environment extension files to expand the environmental settings.

5.4.3 Software Segment Types

Software segments add functionality to one or more account groups. The account group(s) to which the
software segment applies is called the affected account group(s). The directory structure for a software
segment was presented in Figure 5-2.

Software segments frequently need to extend the runtime environment, add new menus and icons to the
desktop, and include new executables in the search path. Environment extension files are located
underneath the software segment’s Scripts subdirectory. The ReqrdScripts segment descriptor
indicates which environment files are to be extended.

Software segments provide additional menu and icon files underneath the segment’s data/Menus and
data/Icons subdirectories respectively. The segment descriptors Menus and Icons are used to
describe where the new items are to appear on the desktop. At installation time, the menu and icon files

41 This program is required for backwards compatibility and as an aid to integrators and testers. It may be
phased out in a future release because the program is not necessarily used in the operational system,
depending upon the characteristics of the system desktop.

Segment Types and Attributes

DII COE I&RTS: Rev 3.0 July 1997134

from all contributing segments are added to the affected account group. This then serves as a master
template of all possible functions provided within the account group. Profiles are then created by
selectively including or excluding functions within this master template.

UNIX segments that provide executables must ensure that the bin subdirectory is included in the search
path. This is accomplished by including a statement of the following form in a .cshrc extension file:

set path =($path $segprefix_HOME/bin)

The segment shall append its bin subdirectory, and only its bin subdirectory, at the end of the search
path, not the beginning. An implied aspect of this requirement is that segments cannot depend upon a
specific loading sequence, other than that a segment will not be loaded until after all segments it depends
upon are loaded. A specific requirement is that segments shall not insert the current working directory (i.e.,
“.”) into the search path.

DII compliance requires the following:

• Segments shall not make separate copies of executables from other segments, the operating system, or
other COTS products.

• Segments shall use environment extension files as necessary to extend the environment established by

the affected account group.

• Segments shall use the segment prefix to name objects whenever conflicts may arise with other

segments.

• Segments shall be completely self-contained. Dependencies on, or conflicts with, other segments shall

be specified through the appropriate Requires or Conflicts segment descriptors.

• Segments shall not insert the current working directory into the search path for executables.

• (UNIX) Segments shall include their bin subdirectory at the end of the search path, not at the

beginning nor in the middle.

5.4.4 Data Segment Types

Data files are most often created explicitly at runtime by a segment or loaded as part of the segment itself.
However, the ability to load data as a separate segment is useful when there is classified data, optional data,
large amounts of data, or data that may not be releasable to all communities. The COE supports five
categories of data grouped according to data scope, how the data is accessed, and where the data is located:

Global Data in this category means that every platform, every application, and every
operator on the LAN accesses and uses exactly the same data. Global data is made
available through Network File Server (NFS) mount points or some similar
technique. Examples of global data include the track database and message logs.
Global data is located in subdirectories underneath /h/data/global.

Database This category is similar to global data but is used to provide data fill for a database
segment. Examples of this kind of data include intelligence databases, JOPES data,
and TPFDD data. Data is loaded into the appropriate objects previously created by
a database segment in a database server. Database segments are discussed further
in subsection 5.4.5. Data segments for databases are usually removed after
successfully loading data into the database server.

Segment Types and Attributes

DII COE I&RTS: Rev 3.0 July 1997 135

Local Local data is limited in scope to an individual platform. All platform users and
applications access the same data, but the data may (and frequently will) differ
from one platform to another. Examples include overlays and briefing slides,
although the COE provides techniques for exporting these to other platforms.
Local data is located in subdirectories underneath /h/data/local.

Segment Segment data is local to a platform, but is managed and accessed by a single
software segment. This data is located under the segment’s data subdirectory
(e.g., SegDir/data where SegDir is the assigned directory) and is typically
static data used for segment initialization.

Operator Data in this category is specific to an operator and is the most limited in scope.
Typical examples include preferences for map colors, location of various
windows, and font size. Operator data is stored in a data subdirectory underneath
/h/USERS created for the operator when the operator login account is created, as
described in subsection 5.2.2.

There are some important considerations with respect to these data categories:

• Data is not necessarily available to an operator or process even if the data scope would otherwise
permit it. Discretionary access controls limit access based upon the security policy of the system.

• In some cases, data that could be global is replicated on every platform to improve system

performance. For example, World Vector Shoreline data is identical for everyone on the LAN, and
hence meets the criteria for the global data category. However, for efficiency, this data may be
replicated on each platform which requires maps and is thus considered local.

• Distinction is made between segment data and local data because it affects where the data is stored on

the disk. Local data for all segments is stored in a single place to make it easier for doing data backups.
Because segment data is normally static, it does not usually need to be archived and remains with the
segment.

Segment data created at runtime or loaded as part of the segment does not require any special consideration
by the COE. The remainder of this subsection will deal with the COE requirements for local and global
data, and then present an example of how a data segment is structured for local, global, and segment scope.

global and local Subdirectories

Figure 5-8 shows the directory structure for global and local data. The COE runtime environment sets the
environment variable DATA_DIR to point to /h/data. Segments shall use this environment variable to
reference global or local data. The segment which owns the local or global data is responsible for creating
and managing its data subdirectories underneath $DATA_DIR/local and $DATA_DIR/global.
Assuming the segment’s assigned directory is SegDir, the segment shall create a subdirectory of the form
SegDir/data under $DATA_DIR/local and/or $DATA_DIR/global as appropriate.

For example, suppose a segment that does Anti-Submarine Warfare (ASW) planning is located underneath
/h/ASW and it will create both global and local data. Then the ASW segment must create the subdirectory
$DATA_DIR/local/ASW/data for local data and the subdirectory
$DATA_DIR/global/ASW/data for global data.

The COE mandates that local and global data be structured in this fashion for the following reasons:

• Centralizing data makes it easier to archive and restore. A simple data archive/restore utility can be
created without needing to know how many segments are loaded in the system.

Segment Types and Attributes

DII COE I&RTS: Rev 3.0 July 1997136

• Separating data from software makes it simple to load the software without destructively overwriting
existing data. This is especially important as segments are upgraded.

* NT only

data

h

local global app-defaultsfonts

COE UB JCALS

data

...

data data

GSORTS JCALS ...

datadata

*Registry

Figure 5-8: Data Directory Structure

• Collecting all global data under a single directory reduces the number of NFS-type mount points and
improves overall network performance.

• Organizing data into a standard structure simplifies training and simplifies determination of what data

is loaded in the system.

fonts and app-defaults Subdirectories (UNIX)

Figure 5-8 shows two additional subdirectories, fonts and app-defaults. These are applicable to
UNIX only. The COE sets environment variables XFONTSDIR and XAPPLRESDIR to point to these
subdirectories. Their purpose is to contain additional fonts (such as Naval Tactical Data System [NTDS]
symbology) or application resource files that are not provided by the standard X/Motif distribution. It is a
violation of the COE for a segment to overwrite or add files to the standard X/Motif distribution.

During installation, the installation tools look for subdirectories data/fonts and data/app-
defaults underneath the segment’s directory. Files contained within these subdirectories must use the
segment prefix to guarantee unique names. The installation tools create symbolic links underneath the
directory $DATA_DIR/fonts to every file in the segment’s data/fonts subdirectory and removes the
links when the segment is deinstalled. Similarly, links are created for files underneath the segment’s
data/app-defaults subdirectory.

Creating a data segment requires additional considerations. A segment structure is created for the data and
the installation tools logically insert the data underneath $DATA_DIR for global and local scope, but
underneath the parent segment for segment data. This is best described through use of an example.

Assume a mine countermeasures decision aid has an assigned directory of MineTDA. Assume that a
separate data segment is to contain parametric data on floating, proximity, and land mines for the decision
aid. Figure 5-9 shows the appropriate directory structure for the data segment. Further assume that when

Segment Types and Attributes

DII COE I&RTS: Rev 3.0 July 1997 137

installed, the decision aid is located underneath /h/MineTDA. Consider how the installation tools handle
the mine data segment for global, local, and segment scope.

MinesData

SegDescripdata

Floating Proximity Land

h

Figure 5-9: Example Data Segment Structure

Global Scope Example

The Data segment descriptor describes the data scope. For a global data segment, the installation tools will
load the mine data underneath the directory $DATA_DIR/global/MinesData. If there is insufficient
space to load the segment underneath $DATA_DIR/global, the install tools will report an error and
abort. The mine TDA can thus reference global proximity-mine data as being underneath the directory
$DATA_DIR/global/MinesData/data/Proximity.

Local Scope Example

For a local data segment, the installation tools will load the mine data on the first available disk partition.
The installation tools will then create a symbolic link from $DATA_DIR/local/MinesData/data to
wherever the data segment was actually loaded. That is, if the data segment is loaded underneath
/home2/MineData, then the symbolic link will point to the directory /home2/MineData/data. The
mine TDA can still reference local proximity mine data as being underneath the directory
$DATA_DIR/local/MinesData/data/Proximity.

Segment Scope Example

For segment scope data, the installation tools will load the mine data on the first available disk partition. A
symbolic link is then created from the directory /h/MineTDA/data/MinesData/data to wherever
the data segment was actually loaded. Proximity data can thus be referenced as being underneath the
directory $HOME_DIR/data/MinesData/data/Proximity.

It should now be clear why the COE requires that segments which dynamically create global or local data
do so underneath a directory of the form SegDir/data, where SegDir is the name of the segment’s
assigned directory. This creates a uniform technique for locating files whether they are created directly by a
segment or loaded as part of a data segment.

In summary, DII compliance mandates that:

• Segments shall create a data subdirectory underneath $DATA_DIR for global and local data if they
own global or local data. The subdirectory created shall be SegDir/data where SegDir is the name
of the segment’s assigned directory.

Segment Types and Attributes

DII COE I&RTS: Rev 3.0 July 1997138

• The parent COE-component segment shall set the environment variable DATA_DIR to point to
/h/data.

• Segments shall use the environment variable DATA_DIR to reference data underneath /h/data.

• Segments are responsible for creating the segment’s data subdirectories underneath /h/data.

• Segments are responsible for handling the case in which a data file is not present or is corrupted.

• (UNIX) The parent COE-component segment will set environment variables XFONTSDIR and

XAPPLRESDIR to point to $DATA_DIR/fonts and $DATA_DIR/app-defaults respectively.

• (UNIX) Segments shall place fonts that need to be accessible via XFONTSDIR in the segment’s

SegDir/data/fonts subdirectory. Files in this subdirectory shall be named using the segment
prefix.

• (UNIX) Segments shall place application resource files that need to be accessible via XAPPLRESDIR

in the segment’s data/app-defaults subdirectory. Files in this subdirectory shall be named using
the segment prefix.

5.4.5 Database Segment Types

The database segment type is similar in concept to the data segment type, except that the data within a
database segment type is managed by a DBMS. Data within a data segment type is typically organized as a
“flat file” and is typically managed by the operating system’s file system.

As explained in Chapter 2, a database segment has scope, which is an indication of how widely the data is
shared, not of where the data is located, as is the case with the data segment type already described. This
scope is indicated in the Database segment descriptor discussed in subsection 5.5.2.9. Data within a
database segment type may be:

Unique This type of database segment indicates that the data is used by only one
application, or is under the configuration control of the segment sponsor. Unique
data represents no sharing between segments.

Shared This type of database segment indicates that the associated data is used by multiple
mission-application segments or is managed across multiple database segments.
Data is shared, but typically only within one mission domain (e.g., logistics,
financial, command and control).

Universal Data in this category represents the most extreme form of “shareability.” These
database segments represent widespread usage across mission domains,
application segments, and require centralized configuration management.

A database segment contains everything that is to be installed on the database server under the management
of the DBMS and the ownership of the DBA. It contains the scripts to create a component database and any
utilities provided by the developers for the DBA’s use in installing and filling that particular database.
These scripts must include those for granting and revoking database roles. The only applications permitted
in a database segment are those that support its installation and data fill or that extend DBMS services for
the DBA. Database segments may only be installed on a database server.

When a database segment is installed it must first lay down any scripts, data files, etc. that will be used to
create the database. These scripts are then executed by PostInstall to create the component database.
They must first allocate storage to hold the database and create one or more database accounts to own that

Segment Types and Attributes

DII COE I&RTS: Rev 3.0 July 1997 139

database. They then can create the database within the storage just allocated and fill it with data. Finally,
roles are created to manage access and the roles are given the appropriate privileges.

Developers cannot provide data files for the DBMS as part of the segment. Database files must be created
using the DBMS vendor’s utilities (e.g. Oracle’s SQL*DBA CREATE TABLESPACE command) to be
correctly incorporated in the DBMS instance.

Figure 5-10 is the same as Figure 5-2 except that it has been shaded to highlight the directories which are
used only for database segments and directories which are not required at runtime have been removed. Seg
is the segment’s assigned directory. It is unique and, for a database segment, it must be the same as the
name of the database owner account for the segment’s data objects.

Scripts Subdirectory

The Scripts subdirectory shall contain any segment-specific scripts needed to set the environment for
the database installation. This includes environment variables for all directory paths that are used by the
installation scripts. Note that this directory is used as a place to store installation-related environmental
scripts. As with the development environment, scripts and environmental settings which are used only for
installation must be kept separate from those used by the runtime environment.

SegDescrip Subdirectory

The SegDescrip subdirectory contains the descriptor files necessary to install the database segment.
Certain information specific to database segments must be incorporated in the SegInfo file. The
Database descriptor is used to identify information such as object dependencies that are within the
database and therefore cannot be evaluated without the use of the DBMS. See subsection 5.5.2.9 for the
associated keywords for this segment descriptor.

The PreInstall descriptor file should prompt the installer to provide the password for the DBMS’
database administrator account. The password prompt must be implemented via the COEPromptPasswd
API (see Appendix C) provided by the COE Services. The DBA password entered is used later by the
scripts that perform the installation of the database segment.

The PostInstall descriptor file is used to set up the installation environment, start the RDBMS if
necessary, and invoke the scripts that perform the installation of the database segment.

For database segments, the ReleaseNotes descriptor should show how applications, operating system
groups, and database roles are associated. Developers should also provide the database schema, including

h

Seg

ScriptsSegDescrip bindata install DBS_files

Figure 5-10: Database Segment Structure

Segment Types and Attributes

DII COE I&RTS: Rev 3.0 July 1997140

its dependencies. In addition to any narrative information in this file, developers should include comments
on their schema, data objects, and data elements as part of their database build.

The Requires descriptor must identify the required RDBMS and version. It must also identify all
dependencies on other database segments.

As with data segments, database segments have a scope associated with them. The scope is specified in the
Database segment descriptor, as explained in subsection 5.5.2.9.

install Subdirectory

The install subdirectory contains the scripts to install and then create the database segment. It includes
all of the DDL scripts that create the database objects for the segment. There are two sets of DDL scripts in
this directory. The first set allocates storage for the database, creates the database owner, and defines the
roles associated with the database segment. It must be executed by a DBA. The second set creates all
database objects (tables, views, indexes, sequences, constraints, triggers, etc.) that make up the database.
This set must be executed by the database owner.

The naming conventions to be used for database definition scripts and the structure of those scripts are
discussed in Chapter 4.

data Subdirectory

The data subdirectory contains any data files used to load the database. Data fill may also be provided in
a separate data segment if developers wish or need to keep the fill separate.

Several methods for loading data, depending on data size, are discussed in subsection 5.9.3.

bin Subdirectory

The bin subdirectory contains any scripts or other executables used to load data from the data files into the
database. It may also contain any applications that support unique database administration requirements for
that database segment.

DBS_files Subdirectory

The DBS_files subdirectory contains the DBMS-controlled data files that make up the storage for the
database. This directory is owned by the DBMS, not the segment. The data files are created during the
installation of the segment, normally in the PostInstall process. Directory ownership must be
transferred to the DBMS before the data files are created. Note that this does not allow developers to
stipulate disk architecture.

5.4.6 Patch Segment Types

The COE supports the ability to install field patches on an installed software base. A patch segment permits
the replacement of one or more individual files, including those of the operating system. It does not refer to
overwriting a portion of a file, as is sometimes done to patch a section of binary code.

Patches are created in a segment whose directory name is the directory name of the affected segment
followed by a “.”, followed by the letter “P”, followed by the patch number. Figure 5-11 shows an example
patch segment directory structure for applying patch 5 to an ASW segment. The subdirectory
SegDescrip is required, but the remaining subdirectories are patch-dependent. The example illustrates a
situation in which scripts, executables, and data files are to be updated by installation of a single patch
segment.

Segment Types and Attributes

DII COE I&RTS: Rev 3.0 July 1997 141

Scripts bin dataSegDescrip

ASW.P5

h

Figure 5-11: Example Patch Directory Structure

The installation software loads patches underneath the affected segment in a subdirectory called Patches.
Figure 5-12 shows the result of loading patch 5 from Figure 5-11. This approach makes it easy to find and
identify what patches have been applied to a segment. It also makes it easy for the installation software to
automatically remove patches when a segment is replaced by a later update. If there is insufficient room to
physically load the patch underneath the Patches subdirectory, the patch is loaded on the first available
disk partition. A symbolic link is then created to preserve the logical structure shown. Also note that when
installed, the resulting subdirectory name of the patch for this example is P5, not ASW.P5.

As patches are installed and removed, the descriptor file Installed in the segment descriptor directory
for the affected segment is updated to reflect what patches are installed and removed, the date and time, the
installer’s name, and the platform from which the work was done.

When a patch is installed, it is the patch segment’s responsibility to perform whatever operations are
necessary to replace files. In the example shown, the PostInstall script must copy files from
Scripts, bin, and data as required to update files in the existing ASW segment.

To facilitate patch removal, the PostInstall program may create compressed copies of files before
they are modified and put them underneath the patch subdirectory (e.g., the ASW/Patches/P5
subdirectory in this example). In this way, a DEINSTALL descriptor simply needs to copy the files from
the patch subdirectory to their original place and decompress them to restore the system to the pre-patch
state. If the files being replaced are large, this may require too much disk space to store the original files. In
such cases, the patch segment should be designated as a permanent patch and not make copies. A patch
segment is considered to be permanent if the patch segment does not include a DEINSTALL descriptor.

Segment Types and Attributes

DII COE I&RTS: Rev 3.0 July 1997142

Scripts bin dataSegDescrip

ASW

h

P5

Scripts Patches SegDescrip

Figure 5-12: Example Installed Patch

The COE installation software assumes that higher numbered patches must be removed before a lower
numbered patch can be removed. For example, patch 2 cannot be removed until patch 5 is removed.
However, if patch 5 cannot be removed - because there is no DEINSTALL descriptor for patch 5 -
patches 1 and 2 cannot be removed either. The only way to remove them is to remove the entire segment.

DII compliance requires that:

• Patch segments shall be named SegDir.Pnumber where SegDir is the assigned directory name for
the segment to be patched, and number is a sequential patch number.

• Patch segments shall perform the necessary operations to replace files through the PostInstall

script.

• Permanent patch segments shall be designated by the absence of a DEINSTALL script.

Patch segments can also be used to make updates to a database segment prior to the release of a new
database segment that incorporates the patch. The patch segment structure will be the same as the database
segment being patched, and the patch name follows the same conventions as for any other patch segment.

Any objects, scripts, etc. that are being updated will be in the same location under the patch segment
directory as the corresponding original is under the database segment directory. PostInstall will be
used to backup the original and copy the new file to the database segment directory. The patch segment will
have the same owner as the database segment being patched.

Any changes to executables provided with the patch will be implemented in the same manner as patches to
other software segments. Any changes to the database provided with the segment will require an analysis to
determine application segment dependencies. Changes to the database must be coordinated with application
segment developers.

If the patch segment is making any changes to the database objects, its developers are responsible for
preserving the information those objects currently contain, together with restoring any permissions that
have been granted on the objects. This usually requires extracting and saving the records from the objects
being modified, making the schema changes, and then reloading their data. That portion of the patch
segment must be implemented in a manner that allows it to be restarted or re-executed without data loss in
the event of system or media failure during the patch installation.

Segment Types and Attributes

DII COE I&RTS: Rev 3.0 July 1997 143

5.4.7 Aggregate, Parent, and Child Attributes

It is sometimes convenient for a collection of segments to be treated as an indivisible unit. The aggregate
attribute provides this capability and the collection of segments are called an aggregate segment. One, and
only one, segment is designated as the parent segment and the remaining segments are designated as
children. Parent and child segments are designated as members of an aggregate in the SegName descriptor
file. The child segment must list its parent segment in SegName (but not in Requires), while the parent
segment must list each child (in SegName but not Requires) in the aggregate. See subsection 5.5 for
the segment descriptor information required to do this. Each segment within the aggregate is packaged
according to its segment type as described in preceding subsections.

The parent segment plays a special role in the aggregate. During installation with the segment installer,
only the parent segment is “seen” by the operator. Child components are not displayed as selectable items,
but are automatically loaded with the parent. Therefore, the segment name and release notes associated
with the parent segment should be carefully chosen to be properly descriptive of the aggregate.

The parent segment is the first segment loaded from the aggregate. Child segments are loaded next in the
order listed by the parent segment. Because of this, child segments may specify a dependency on the
parent, but shall not specify dependencies upon one another.

In some situations, a child segment in an aggregate should be loaded conditionally. That is, the child should
only be loaded if it is not already on disk, or only if it is a later version. An example of this situation is if a
collection of segments created by a single developer must use the same executable. One approach would be
to create the common executable and put it into its own separate segment. Then all the remaining segments
would need to state a dependency upon it. An alternative approach, supported here, is to package the
common executable as a child segment that is to be conditionally loaded and placed in an aggregate with
each segment that needs it. The conditional load capability is specified by the $LOADCOND keyword in the
child segment’s SegName descriptor (see subsection 5.5.1.10).

The COE requires that each segment include a Security segment descriptor. This file is used primarily
as a documentation aid and is used by the installer tool to indicate which segments are classified at what
level. The security level of the parent segment must dominate that of the child segments. For example, if a
child segment has a SECRET classification, then the parent segment must have a SECRET or higher
classification. The segment developer must ensure that each segment in the aggregate is compatible for the
hardware platform. VerifySeg will check for this condition and reject an aggregate with incompatible
hardware platforms specified.

Disk space required is specified by each individual segment, not by the aggregate parent. The COE
installation tools may load parent and child segments on different disk partitions, depending upon space
available at install time. During installation, the space reported to the installer takes into account whether or
not the aggregate includes a conditional load child, and whether or not the segment is already on disk. That
is, the installer tool reports the additional space required on the disk to load the selected segment(s).

DII compliance requires:

• One and only segment in the aggregate shall be designated as the parent segment.

• Child segments may specify a dependency on the parent, but shall not specify dependencies upon one

another.

• The security level of the parent segment shall dominate the security level of all child segments.

• Segments within an aggregate shall be consistent with regard to the hardware platform specified.

• Segments shall individually specify their own disk space requirements.

Segment Types and Attributes

DII COE I&RTS: Rev 3.0 July 1997144

5.4.8 COE-Component Attribute

Segments authorized by the DII COE Chief Engineer may specify the attribute of being a COE-component
segment. COE-component segments are similar to aggregate segments in that one segment serves the role
of a parent segment and all others are children to that parent. The parent segment is similar to an account
group segment which is affected by a collection of child component segments. However, there are
important differences between COE-component segments and aggregate segments, and between the parent
COE-component segment and account groups.

• At installation time, a segment identified as a COE component must have an authorization key42 (see
the $KEY keyword) specified or else the segment will be rejected.

• Exactly one segment is designated as the parent COE component for the entire system. This is the

segment whose directory is /h/COE.

• Child COE-component segments are not loaded unless they are required. That is, a child COE-

component segment will not be loaded unless there is another segment which expresses a dependency
upon it.

• COE-component segments are organized into a very specific structure.

• The parent COE-component segment does not set up a runtime environment. It sets up a baseline

environment which is inherited by all account groups.

Figure 5-13 shows the directory structure for COE-component segments. Since COE components form the
foundation for the entire system, they are collected together in a single place and are validated more
rigorously during segment development, integration, and installation. Special processing, as explained
below, is performed on the COE components because of their unique position within the architecture.

The SegDescrip subdirectory, required for all segments, underneath /h/COE refers to the collection of
COE components as a whole. Segments designated as child COE components are loaded in the
subdirectory /h/COE/Comp. Each child COE-component segment has its own SegDescrip, bin,
Scripts, and data subdirectory as appropriate. If insufficient space exists to load the COE component
directly under /h/COE/Comp, a symbolic link is created to where the segment was actually loaded.

Environment files underneath /h/COE/Scripts are included by every account group so that they are
automatically inherited by every segment. The file .cshrc.COE sets the path environment variable so
that /h/COE/bin is first in the search path before any other segments. Environment extensions for child
COE components are handled differently than environment extensions for other segments. As child COE-
component segments are installed, environment extension files located underneath the child COE
component’s Scripts subdirectory are textually inserted directly into the appropriate file underneath
/h/COE/Scripts. This insertion is performed automatically by the installation tools. This is done to
avoid the runtime overhead of executing several source statements to pick up child segment extensions.

Child COE-component segments shall not alter the path environment variable. It is not necessary to do so
because as child COE components are loaded, the installation tools create a symbolic link underneath
/h/COE/bin to where the executables were actually loaded. This is done so that the search path contains

42 To preserve backwards compatibility, segments which are already authorized as COE-component
segments are not required to use the $KEY keyword for this I&RTS release. However, they are required to
migrate to this approach. In the interim, a legacy segment identified as a COE-component segment which
does not use the $KEY keyword is compared against a table containing the names of authorized COE-
component segments. If it does not match, the segment is rejected. All new COE-component segments
must use the $KEY keyword.

Segment Types and Attributes

DII COE I&RTS: Rev 3.0 July 1997 145

only one entry for the COE, regardless of the number of actual segments comprising the installed COE.
This approach mandates that all COE-component segments use the segment prefix to name executables.
VerifySeg will issue a warning for COE-component segments that do not meet this requirement, but in a
future release it will strictly fail such a component.

EM UB ...

COE

h

Scripts bin data SegDescrip Comp

EM DCEUB CDE ...

.chsrc.COE

.login.COE

Figure 5-13: COE-Component Segments Directory Structure

Symbolic links are also created underneath /h/COE/data to point to the child COE component’s data
subdirectory. The installation tools automatically delete these symbolic links when a COE-component
segment is deinstalled.

To summarize DII compliance requirements:

• COE components shall be authorized by the DII COE Chief Engineer. They will be issued an
authorization key that the developer shall specify in the segment with the $KEY keyword.

• Child COE components shall not alter the path environment variable.

• COE components shall use the segment prefix to name all executables.

• Child COE components shall use the segment prefix to name all public symbols contained in files

within the segment’s Scripts subdirectory.

5.4.9 DCE Attribute

The DII COE supports both DCE server and DCE client applications. Servers are designated with the
DCEServerDef segment descriptor (see subsection 5.5.2.11) while clients are designated with the
DCEClientDef segment descriptor (see subsection 5.5.2.10). Segments, whether a DCE server or a
DCE client, must indicate the DCE attribute or else the VerifySeg tool will generate a fatal error when
processing DCE-related segment descriptors.

Segment Types and Attributes

DII COE I&RTS: Rev 3.0 July 1997146

5.4.10 Web Attribute

Segment types that have the Web attribute are either Web servers or Web-application segments (e.g., Web
clients). By definition, Web servers are also COE-component segments, so they have that implied attribute
as well. Web applications may or may not be COE components, and so must indicate explicitly whether or
not they are. This is described in subsection 5.5.1.10.

Web applications can only be installed on a platform that already has a Web server loaded on it. Therefore
Web applications must be designed so that they can access other COE services that may be located on
another platform, possibly even behind a firewall. This allows sites to isolate the main COE-based system
from the Web server by firewalls or other security-related techniques.

Other than specifying the Web attribute, no additional segment descriptors are presently required beyond
those identified for all other segments.

5.4.11 Generic Attribute

The Generic attribute is provided to allow a segment to indicate that it should be automatically made a
member of all “regular” account groups. This means that the segment, unless it indicates otherwise, will be
made a participant of all account groups except those which are character-interface-based (e.g., CharIF)
or accessed through remote execution account groups such as RemoteX.

This capability is provided for two reasons. First, some segments should be made a member of virtually
every account group. An example is a Web browser which is set up to provide access to HTML help pages.
Such a segment should be a member of the following:

• the System Admin account group
• the Security Admin account group
• the Database Admin account group
• the operator account group (e.g., GCCS, ECPN).

It is convenient that this happen automatically without the need for the segment to explicitly list every
account group it is to be a member of. Such segments do not need to express any affected account group in
the SegName descriptor.

Second, some segments developed for one system may be generally applicable to other mission systems,
yet this may not have been realized when the segment was created. Using the Web browser example, if it is
packaged for GCCS and it states GCCS is the affected account group, the segment’s SegName descriptor
will need to be modified to use it for a different system such as ECPN or GCSS. Declaring the segment to
have the generic attribute avoids this problem.

There are some special points to note about segments which declare the generic attribute:

• The segment is automatically added to every account group except CharIF and RemoteX.

• Site administrators can establish user profiles to deny an operator access to the generic segment, even

if it is a member of an account group.

• The generic segment is only stored on the disk once, regardless of how many account groups it is made

a member of.

• Generic segments may exclude account groups by listing the groups to exclude with the $EXCLUDE

keyword in the SegName descriptor.

Segment Types and Attributes

DII COE I&RTS: Rev 3.0 July 1997 147

• The generic attribute may be combined with other segment attributes. Subsection 5.5.1.10 states which
attributes may be combined.

5.4.12 Segment Dependencies

Segments specify dependencies upon one another through the Requires descriptor, and, for database
segments with database dependencies, the Database descriptor. However, the COE does not allow
circular dependencies. That is, a situation where Seg A depends upon Seg B, Seg B depends upon Seg C,
and Seg C depends upon Seg A is strictly forbidden.

Components of an aggregate may have dependencies upon other components within the same aggregate
and such dependencies could lead to the circular situation just described. But since components of an
aggregate are always loaded together as a unit, this does not pose a problem. Child components of an
aggregate must not specify dependencies upon one another in the Requires file, even if they do indeed
have such dependencies. Likewise, the parent segment must not specify a dependency on children within
the aggregate. An aggregate of database segments cannot have circular database dependencies among the
segments or there will be no valid database creation order.

Segment Descriptors and Descriptor Files

DII COE I&RTS: Rev 3.0 July 1997148

5.5 Segment Descriptors and Descriptor Files

This section details the contents of the segment descriptor files. These files are the key to providing
seamless and coordinated systems integration across all segments. Adherence to the format described here
is required for all segments to ensure DII compliance. This enables automatic verification and installation
of segments.

The software tool VerifySeg must be run during the development phase to ensure that segments properly
use segment descriptor files. The software tool MakeInstall uses information in segment descriptor
files to compress and package segments in a format suitable for installation from tape, from a disk-based
LAN segment server, from a remote site, or from other media. At installation time, the installation tools use
segment descriptor information to make the COE changes required (e.g., update menu files) so that
software components are available to the user.

Some segment information is contained within individual files while other segment information is collected
into a single file, SegInfo. Segment descriptors which are contained in their own separate file are
discussed in subsection 5.5.1 while segment descriptors that are contained within the SegInfo file are
discussed in subsection 5.5.2. SegInfo is an American Standard Code for Information Interchange
(ASCII) file (similar to a Windows .INI file) with multiple sections containing segment descriptor
information.

Table 5-4 lists each of the descriptor files and which are required, optional, or not applicable for each
segment type. Table 5-5 lists the same information for segment descriptor sections within the SegInfo
descriptor file. The VerifySeg tool will display these two tables when the -t flag is given on the
command-line so that the latest information from these two tables is available online.

A SegInfo segment section begins with a single line of the form

[section name]

where section name is chosen from the list in Table 5-5. A section continues until another section name is
encountered, or the end of the file is reached. A section may appear only once within the SegInfo file,
but the order in which sections appear is unimportant. Section names are not case sensitive.

If a section name that the tools do not recognize is encountered, a check is made to see if a helper function
is available to process the section. If so, the helper function is invoked, otherwise an error is issued.
Appendix C describes which tools accept helper functions. Creation of a helper functions require
authorization by the DII COE Chief Engineer.

Segment Descriptors and Descriptor Files

DII COE I&RTS: Rev 3.0 July 1997 149

Descriptor Acct
File COTS Grp S/W Data DB Patch
DEINSTALL O O O O O O
FileAttribs O O O O O O
Installed I I I I I I
PostInstall O O O O O R
PreInstall O O O O O O
PreMakeInst O O O O O O
ReleaseNotes R R R R R R
SegChecksum I I I I I I
SegInfo R R R R R R
SegName R R R R R R
Validated I I I I I I
VERSION R R R R R R

R - Required O - Optional N - Not Applicable
I - Created by Integrator or Installation Software

Table 5-4: Segment Descriptor Files

Acct
Section COTS Grp S/W Data DB Patch
AcctGroup N R N N N N
*AppPaths N O O N N N
COEServices O O O O O O
Community O O O O O O
Comm.deinstall O O O O O O
Compat O O O O O N
Conflicts O O O O O O
Data N N N R N N
Database N N O N R O
DCEClientDef O N O N N N
+DCEServerDef O N O N N N
Direct O O O O O O
FilesList R O O O O O
Hardware R R R R R R
Help O O O O O O
Icons O R O N N O
Menus O R O N N O
**Network O N O O N O
Permissions N O O N N O
Processes O O O N N O
*Registry O O O O O O
+ReqrdScripts N R O N N N
Requires O O O O O O
Security R R R R R R
SharedFile O O O N N O

R - Required O - Optional N - Not Applicable
* - NT platforms only + - UNIX platforms only
** - COE Component Segments Only

Table 5-5: SegInfo Segment Descriptor Sections

Segment Descriptors and Descriptor Files

DII COE I&RTS: Rev 3.0 July 1997150

Certain general characteristics are common to all files or sections listed in these two tables:

1. All descriptor files are ASCII data files, except for those which are executables (e.g., PostInstall,
PreInstall, PreMakeInst, and DEINSTALL) which may be script files or compiled code.
Regardless of platform, the descriptor files may have an optional file extension. The .TXT file
extension is permitted for each descriptor file except DEINSTALL, PostInstall, PreInstall,
and PreMakeInst. These are actually executables and may have a .BAT extension (for batch files),
a .EXE extension (for compiled code), or no extension at all. The file extensions are optional, but
developers should conform to standards on the platform for which the segment is targeted.

2. In describing syntax, options which may appear exactly once are delimited by brackets (i.e., “[]”),

while options that may appear multiple times are delimited by braces (i.e., “{ }”). The “|” (boolean
exclusive or) symbol is used to indicate a selection of one item from a list of choices. The delimiters
are not entered into the actual descriptor file.

3. Descriptor files may contain comments. Comments are delimited by using either the standard C

convention43 (e.g., delimited by /* */), or on a line by line basis using the # character. C style comments
may not be nested. C style comments may not be used in PostInstall, PreInstall,
PreMakeInst, or DEINSTALL since these are executable scripts. (These may also be compiled
programs instead of scripts, although scripts are recommended because they can be examined at
integration time for potential problems.)

4. Blank lines may be used freely and are ignored unless they are within a block of text for insertion,

replacement, etc. Blank lines are ignored when searching for a block to delete or replace. Similarly,
blanks, tabs, and other whitespace are ignored unless they are part of a block to insert or replace.

5. When a block of text is required, such as in adding a block of text to a community file, the characters

“{“ and ‘“}” are used as block delimiters.

6. Keywords inside a descriptor file are always prefixed with the “$” character.

7. C style #ifdef, #else, #elif, #endif, and #ifndef constructs may be used in descriptor files,

along with the standard C boolean operators. These constructs may not span segment descriptor
sections. The constants which may be used in these constructs are defined in subsection 5.3.

8. During installation, the COE installation software sets up to five environment variables:

INSTALL_DIR is the absolute pathname to where the segment will be loaded (PreInstall) or was
loaded (PostInstall). MACHINE_CPU and MACHINE_OS are set to describe the type of platform
on which the software has been loaded. Valid values for these environment variables are listed in
subsection 5.3. SYSTEM_ROOT (for NT only) is set to point to the directory where Windows is
installed. COE_TMPSPACE is the location of temporary space allocated for the duration of segment
installation.

9. Parameters which follow a keyword are given on the same line as the keyword and are separated by

colons. The exception to this rule is when the keyword signals the beginning of a variable length list.
For example,

 $PATH:/etc

43 This should not be misunderstood as stating a preference for C/C++ over Ada or any other language. The
comments referred to are placed in data files, not executable code. C style comments were selected because
they allow a block of text to be commented out by surrounding the block with a single “/* */” pair instead
of including a comment token on each line.

Segment Descriptors and Descriptor Files

DII COE I&RTS: Rev 3.0 July 1997 151

 specifies a pathname while

 $LIST
 f1
 f2
 f3

 specifies a list of files.

10. Some segment descriptors, such as the Requires descriptor, specify the name of another segment

that the COE installation tools must search for at install time. To speed up the search process, segment
names are expressed in the form

 segment name:prefix:home dir:[version:{patches}]

 where segment name is the name of the segment, prefix is the segment’s prefix, home dir is the segment’s

expected home directory, while version and patches are optional. home dir is searched first, and if the
segment name found there is the same as that specified, a match is declared successful. If home dir
does not exist, is not a segment, or the segment name does not match, an exhaustive search is
performed on all segments on all mounted disk partitions.

11. (NT) When a disk drive needs to be specified in a filename, the filename must be enclosed in double

quotes. This is required so that the tools can distinguish between use of ‘:’ as a field delimiter for
descriptors, or as a separator between a disk drive name and a pathname.

12. Some segment descriptors allow a version number or patch level to be specified. See the previous

Requires example. If no version number is specified, any version found is successful. If a version
number is specified, an ordinary lexical comparison of primary version numbers is made with zeroes
inserted for any missing digits. For example, a version number such as 3.4/SunOS-4.1.3 is truncated to
just the primary version number which is then expanded to be 3.4.0.0 for comparison purposes.

13. Some descriptor file features require prior Chief Engineer approval, or are restricted to COE-

component segments. These are described in the sections which follow and generally require the $KEY
keyword to be specified in the applicable section. This keyword requires an authorization key provided
by the Chief Engineer. The authorization key is based on several segment attributes including segment
name, segment prefix, and the section name to which it applies. The format of the $KEY keyword is

 $KEY:permit requested:authorization key

 where permit requested is the keyword or section name the key applies to, and authorization key is the key
given to the developer by the Chief Engineer. A separate authorization key is required for each permit
requested.

14. Certain keywords or section names may be applicable to one platform but not another. These are noted

in the discussion below. If the tools encounter a keyword that is not appropriate for a platform, a
warning will be generated and the keyword or section will be ignored.

15. A segment is considered to be a permanent segment if the DEINSTALL descriptor is not provided.

This means that the installation tools will prevent a permanent segment from being deleted, but it may
be upgraded by loading a newer version of the segment.

DII compliance requires the following:

• Segments shall include all required files shown in Table 5-4. (VerifySeg will fail a segment that
does not include a required descriptor file or descriptor section.)

Segment Descriptors and Descriptor Files

DII COE I&RTS: Rev 3.0 July 1997152

• Segments shall fully specify all dependencies and conflicts through the Requires and Conflicts

descriptors. (Circular dependencies are not allowed.)

• Segments shall fully specify disk and memory requirements (memory may be omitted for data

segments) in the Hardware file.

• Segments shall not use PostInstall, PreInstall, PreMakeInst, or DEINSTALL to make

modifications that the COE installation software will make. Of particular importance is that segments
shall not delete the segment directory during a DEINSTALL script.

• Segments shall use the ReleaseNotes file to convey information meaningful to an operator, not the

system integrator. ReleaseNotes files shall not include company names, names of individuals, nor
software trouble report numbers.

• Segments shall specify a version number and date in the VERSION descriptor file and shall increment

the version number for each subsequent release. Version numbers shall fully comply with the
requirements stipulated in Chapter 3 of this document.

5.5.1 Segment Descriptor Files

This subsection describes all the segment descriptors that are contained in individual files.

5.5.1.1 DEINSTALL

The DEINSTALL descriptor file is an executable, either a script or a compiled program, that is invoked by
the installation software when the operator has elected to remove a segment. This may occur by explicitly
selecting a segment to remove or by electing to install a new version of the segment. DEINSTALL should
perform actions such as shutting down segment-owned background processes prior to segment removal.
Operations performed in preparation for a segment update should normally be done in PreInstall,
while DEINSTALL is used when the segment is to be “permanently” removed from the system.

If this file does not exist, the segment is assumed to be permanent and cannot be removed except when
installing a new version. If a new version is installed and this file does not exist, the installation software
will use the information in the descriptor directory to undo changes made by the previous installation of the
segment and then simply delete the directory.

For security reasons, the DEINSTALL script is not run with root-level privileges, unless the $ROOT
keyword is given in the Direct descriptor. Note that the $KEY keyword must also be specified in the
Direct descriptor to acquire root-level privileges.

5.5.1.2 FileAttribs

The FileAttribs descriptor file allows a segment to specify the attributes (owner, read/write
permissions, group) for each file in the segment. It is created by the tool MakeAttribs (see
Appendix C). The installation tools, just prior to PostInstall, will use information in this file to set file
attributes.

FileAttribs has certain restrictions due to security and segment integrity considerations. The following
will be ignored:

• Files within the SegDescrip subdirectory
• Files outside the segment

Segment Descriptors and Descriptor Files

DII COE I&RTS: Rev 3.0 July 1997 153

• Requests to set root ownership
• Requests to set UNIX “sticky bits” (e.g., chmod 4644)

If FileAttribs is not provided by the segment, the installation tools will automatically do the following
for all except COTS segment types:

• chmod 554 for all files in the bin subdirectory
• chmod 664 for all files in the data subdirectory
• for account groups, set owner to the same group id as specified in the AcctGrps descriptor for all

subdirectories except SegDescrip
• for other segment types, set owner to the same group id as the affected segment for all subdirectories

except SegDescrip.

5.5.1.3 Installed

The installation software creates the file Installed as segments are loaded. The file specifies the
segment that was loaded, the date and time of the installation, which platform was used to do the
installation, and the version number of the software used to do the installation. This file is located
underneath the segment descriptor directory.

5.5.1.4 PostInstall

Most of the work required to install segments is performed by the COE installation software through
information contained in the descriptor directory. However, additional segment-dependent steps must
sometimes be performed. PostInstall is an executable, either a script or a compiled program, that
segment developers may provide to handle segment-specific installation functions after the segment has
been copied to disk and installed by the COE. During installation, PostInstall may invoke functions
(e.g., prompt the user) described in Appendix C.

The PostInstall descriptor must not do any operations that are performed by the COE installation
software. For security reasons, the PostInstall script is not run with root-level privileges unless the
$ROOT keyword is given in the Direct descriptor. Note that the $KEY keyword must also be specified in
the Direct descriptor before root-level privileges will be granted.

5.5.1.5 PreInstall

The PreInstall descriptor file is identical to PostInstall except that it is invoked by the
installation software before the segment is loaded onto the disk. It must not do any operations that are
performed by the COE installation software. For security reasons, the PreInstall script is not run with
root-level privileges, unless the $ROOT keyword is given in the Direct descriptor. Note that the $KEY
keyword must also be specified in the Direct descriptor before root-level privileges will be granted.

5.5.1.6 PreMakeInst

PreMakeInst is an optional executable program or script that is invoked by the MakeInstall tool. Its
purpose is to allow a segment to perform “cleanup” operations, before MakeInstall writes the segment
to the distribution media. Example cleanup operations include:

• deleting temporary files
• ensuring no “core” or other “garbage” files are in the segment
• ensuring no compiler “scratch” files, such as temporary intermediate object files, are in the segment.

Segment Descriptors and Descriptor Files

DII COE I&RTS: Rev 3.0 July 1997154

MakeInstall sets the environment variables INSTALL_DIR, MACHINE_CPU, and MACHINE_OS
prior to invoking PreMakeInst.

5.5.1.7 ReleaseNotes

Use the ASCII file ReleaseNotes to provide information useful to an operator in understanding the new
functionality being provided by the segment or the problems being fixed, and a system administrator
responsible for installing segments. It is not a help file, nor is it information targeted to the system
integrator. Therefore, it must not refer to problem report numbers, version44 numbers, release dates,
individuals or companies, point of contact, or similar information. (This type of information is contained
elsewhere, such as in the VERSION file, and duplication of information may lead to conflicting or
confusing information for the operator.) The ReleaseNotes file must not contain any tabs or embedded
control characters.

An example of a “poor” ReleaseNotes file is

Release: 5.6.3
Point of Contact: John Doe, Tritron Company
Phone: (619) 555-1234

1. Implemented NCR #302
2. Added check for memory overflow
3. Fixed problem with double scrolling in STR #307

An example of a “good” ReleaseNotes file is

This release fixes two known problems:

(a) Calculation of range and bearing for polar latitudes
has been corrected

(b) Display of garbled latitude/longitude in the Track Summary
display for ownship has been corrected

The following new features are added with this release

1. Search and Rescue TDA added.
2. Option added to restrict operator deletion of comms msgs.

The ReleaseNotes is also a good place to convey information to the sites about any COTS features that
are disabled or that may have restrictions on releasability to foreign nationals.

5.5.1.8 SegChecksum

The file SegChecksum is an optional file created by integration software. It contains information
necessary for the System Administrator software to perform an integrity check on the installed software. If
the file does not exist, the integrity check cannot be performed on the segment.

44 The COEInstaller contains a “print” button which allows the release notes to be printed out. It
automatically appends the segment name, and version and date (from the VERSION descriptor) to the
output. This tool also has a button which allows a user to view the release notes on the screen, including
release notes for child segments in an aggregate.

Segment Descriptors and Descriptor Files

DII COE I&RTS: Rev 3.0 July 1997 155

5.5.1.9 SegInfo

SegInfo is an ASCII descriptor file which contains segment information in one or more segment
descriptor sections. Table 5-5 lists the possible sections.

5.5.1.10 SegName

The SegName descriptor file provides the following information:

• segment type ($TYPE keyword)
• segment name ($NAME keyword)
• segment prefix ($PREFIX keyword)
• segment attributes ($TYPE keyword)
• optional aliases for this segment ($EQUIV keyword)
• conditional loading requirements ($LOADCOND)
• company and product name (For UNIX, this is for documentation only. For NT, these are added to the

registry.)
• if applicable, affected account group, or affected segment for patches ($SEGMENT keyword)
• if applicable, name of parent or child segments ($PARENT, $CHILD keywords)

The keywords $TYPE, $NAME, and $PREFIX are required for each SegName descriptor file. Additional
keywords required depend upon segment type. COE-component segments may not contain $SEGMENT,
$PARENT, or $CHILD keywords. All other segments must have one $PARENT line, one or more $CHILD
lines, or one or more $SEGMENT lines.

$COMPANY_NAME:string1
$PRODUCT_NAME:string2

These two keywords are intended for use with COTS products on NT platforms. If either keyword is used,
both are required. They cause the installer to insert the company name (string1) and product name (string2)
in the registry entry

SOFTWARE\company name\product name

Note: These keywords may be present for a UNIX platform, but are
presently ignored. They are intended for future use in UNIX.

$EQUIV:name:prefix

This keyword, which may appear multiple times, allows a segment to define aliases. It is intended to help
legacy segments migrate from an earlier COE (e.g., JMCIS or GCCS COE) to the DII COE. It is primarily
intended for account group segments, but may be used for other segments as well. name is the desired alias
and prefix is the alias segment prefix.

This keyword allows a segment from a legacy system to be loaded under an equivalent account group
without the need to modify the legacy segment’s dependency statements. For example, assume that SegA
was originally developed for JMCIS and that it states in its segment descriptors a dependency on an
account group whose name is JMCIS. Assume that the legacy segment prefix was JMC. Assume that SegB
was developed for the GCCS account group. Finally, assume that SegA and SegB are to be loaded on a
new system under an account group whose name is New Acct Group and whose segment prefix is NAG.
Then the keyword entries

$NAME:New Acct Group

Segment Descriptors and Descriptor Files

DII COE I&RTS: Rev 3.0 July 1997156

$PREFIX:NAG
$EQUIV:JMCIS:JMC
$EQUIV:GCCS:GCCS

allow SegA and SegB to be loaded properly even though they state a dependency on segments, JMCIS
and GCCS, that do not exist in the new system.

$EXCLUDE:name:prefix:home dir

This keyword is used to indicate an account group that a generic segment is to be excluded from. name is
the name of the account group, prefix is the account group’s segment prefix, and home dir is the assumed
location of the account group’s assigned directory. This keyword can only be used with segments that
specify the GENERIC attribute. The CharIF and RemoteX account groups are automatically excluded.

$KEY:COE:key

This keyword is required for all segments that have the attribute COE CHILD, COE PARENT, or WEB
SERVER. key is the authorization key obtained from the DII COE Chief Engineer. For backwards
compatibility, existing COE-component segments are “grandfathered” and may omit this keyword for now.
However, existing segments should be modified to use this keyword to ensure future compatibility.

$LOADCOND

This keyword, which accepts no parameters, is used to indicate that a child segment in an aggregate is to be
conditionally loaded. The child segment is loaded only if the segment does not already exist on the disk or
if the child segment is a later version than one already on the disk. If this keyword is used, the segment
must also have the CHILD or COE CHILD attribute or else an error is given. This capability is not required
for any other type of segment because the installer tool already checks to be sure an earlier version is not
unintentionally being loaded over a later version.

$TYPE:segment type[:attribute1:attribute2:...]

where valid segment types are

COTS
ACCOUNT GROUP
SOFTWARE
DATA
DATABASE
PATCH

and valid segment attributes are

AGGREGATE
CHILD
COE CHILD
COE PARENT
DCE
WEB SERVER
WEB APP
GENERIC

AGGREGATE is used to indicate that the segment being defined is the aggregate parent segment. It is valid
only for account group, data, and software segment types. Aggregates must list one or more child segments
with the $CHILD keyword. The COE does not allow an aggregate of aggregates. That is, it is not valid for
Aggregate A to have a child B which is also an aggregate.

Segment Descriptors and Descriptor Files

DII COE I&RTS: Rev 3.0 July 1997 157

CHILD is used to indicate that the segment being defined is an aggregate subordinate segment. The parent
segment must be listed using the $PARENT keyword.

COE PARENT is used to indicate that the segment being defined is the primary COE segment. Its home
directory will be /h/COE.

COE CHILD is used to indicate that the segment being defined is a COE-component segment other than
the parent. The installation tools will verify that the segment is an authorized COE component and if not
will reject the segment. This is done through the $KEY keyword.

DCE is used to indicate that this segment is a DCE server or a DCE client application. This attribute must
be specified to use any DCE-related segment descriptors.

WEB SERVER is used to indicate that this segment is a Web server and a COE-component segment.

WEB APP is used to indicate that this segment is a Web-based application segment.

GENERIC is used to indicate that this is a generic segment that should be added to the account groups as
described in subsection 5.4.11.

Segment types are mutually exclusive; only one segment type may be given. Segment attributes are also
mutually exclusive, except for DCE, Web and GENERIC attributes as follows:

• DCE may be combined with AGGREGATE, CHILD, or COE CHILD.
• WEB SERVER may be combined with AGGREGATE, CHILD, or COE CHILD.
• WEB APP may be combined with AGGREGATE, CHILD, or COE CHILD.
• GENERIC may be combined with all other attributes except WEB SERVER and COE PARENT.

For example, a generic Web mission application that is a child component of an aggregate would be
expressed as

$TYPE:SOFTWARE:CHILD:WEB APP:GENERIC

The order in which attributes are listed is unimportant.

Note: There are two important considerations with respect to aggregate
segments. First, when a change is made to any segment within an
aggregate, the version number of the parent must be updated to
reflect that a change has occurred. If a child segment was
modified, then the version number of the child must be updated
as well. This is in keeping with good configuration management
practices. Secondly, the parent segment in the aggregate must
specify the version number for each child in the aggregate. See
the $CHILD keyword. This is required to ensure that the child
components are the exact version that the parent is expecting.

$NAME:name

where name is a string of up to 32 alphanumeric characters. Embedded spaces may be used for readability,
but the string must not contain tabs or other control characters.

Segment Descriptors and Descriptor Files

DII COE I&RTS: Rev 3.0 July 1997158

$PREFIX:prefix

This keyword establishes the segment’s assigned prefix, prefix.

$SEGMENT, $CHILD, $PARENT

The syntax for $SEGMENT and $PARENT is the same:

keyword:name:prefix:home dir

The syntax for $CHILD is

$CHILD:name:prefix:home dir:version

where version must45 include all 4 digits of the version number and must match the version number in the
VERSION descriptor for the child segment that is referenced.

This descriptor file may contain one and only one $PARENT keyword. Multiple affected segments or child
segments may be listed by listing each segment on a separate line.

Note: Do not confuse the attribute CHILD with the $CHILD keyword.
The $CHILD keyword is used to indicate a list of subordinate
segments in the parent of an aggregate segment. The CHILD
attribute is used to indicate that a segment is the subordinate
segment in an aggregate whose parent is identified with the
$PARENT keyword.

5.5.1.11 Validated

The COE requires strict adherence to integration and test procedures to ensure that a fielded system will
operate correctly. To facilitate integration and testing, the VerifySeg tool creates the file Validated
to confirm that a segment has been tested for DII compliance. Subsequent tools in the development,
integration, and installation process use this file to determine whether a segment has been altered, thus
indicating that the segment needs to be revalidated.

The following information is captured:

• the version of VerifySeg used to validate the segment
• the date and time validation was performed
• who performed the validation
• a count of all errors and warnings produced by VerifySeg for the segment
• a checksum computed to enable detection of modifications made after the segment was validated.

45 This represents a change from the previous I&RTS. It has been added to correct configuration
management problems related to mismatched parent/child segments within an aggregate. To preserve
backwards compatibility, VerifySeg will presently generate a warning message if the version number is
not specified. However, in a future release it will generate a fatal error so developers should begin to use
the new format given here. If the version number is specified, VerifySeg will generate a fatal error if the
version number is less than 4 digits or does not match the child’s version number.

Segment Descriptors and Descriptor Files

DII COE I&RTS: Rev 3.0 July 1997 159

5.5.1.12 VERSION

The format of the VERSION descriptor is

version #:date[:time]

where version # is the version number for the segment, date is the version date (in mm/dd/yyyy format),
and time is an optional time stamp (in the format hh:mm). Version numbers must adhere to the rules
defined in Chapter 3.

Note: This release of the I&RTS extends the year from 2 digits to 4
digits to avoid complications when the year 2000 arrives.
VerifySeg will issue a warning for any segment that uses less
than 4 digits, but since this date is used for documentation
purposes only, there is no operational impact if only 2 digits are
used.

5.5.2 SegInfo Descriptor Sections

This subsection describes all the segment descriptors that are sections within the SegInfo file.

5.5.2.1 AcctGroup

Syntax for the AcctGroup descriptor is

group name:group ID:shell:profile flag:home dir:default profile name

where

group name is an alphanumeric string used to identify this account group. The account group name
must be unique (i.e., no other account group may have the same name).

group id is a UNIX group id to be inserted into the password file for accounts created from this group.
The user id is calculated automatically by examining the password file for user accounts within the
same group and then adding 1 to the highest user id. Group ids less than 100 should be avoided.

shell is the UNIX shell to execute when logging in (e.g., /bin/csh, /bin/sh). This parameter
should be left blank for NT platforms.

profile flag is 0 if no profiles are allowed, otherwise 1.

home dir is the home directory for the given account group (e.g., /h/AcctGrps/SecAdm).

default profile name is an alphanumeric string identifying the account group’s default profile. This
name is ignored unless the profile flag is nonzero.

In effect, AcctGroup is a template of what to enter into the /etc/passwd file for accounts within this
group.

Segment Descriptors and Descriptor Files

DII COE I&RTS: Rev 3.0 July 1997160

Group names and profile names are not case sensitive. The maximum number of characters in a group
name, including embedded blanks, is 15. The maximum number of characters in a profile name46 is 64. The
maximum number of characters in the home directory pathname is 256.

If the account group is to have a default profile, the installation software will automatically create the
profile with the name specified. The profile will be set up to have a classification level of TOP SECRET
(unless the segment specifies otherwise), all possible object permissions enabled (see the Permissions
descriptor), and all possible menu and icon entries enabled. Note that site administrators will not normally
assign the default profile to any user because it would provide greater access than is warranted either from
a “need to know” perspective, or from a perspective of overwhelming the operator with too many features.
The default profile is provided only as a convenient template for creating user profiles.

The profile classification can be explicitly stated by including a line of the form

$CLASSIF:classification

within the segment descriptor section. Valid classification values are

UNCLASS
CONFIDENTIAL
SECRET
TOP SECRET

5.5.2.2 AppPaths (NT Only)

The AppPaths segment descriptor is used to add a list of executables and DLLs to the NT search path.
The executables are listed immediately after the segment descriptor as in

[AppPaths]
app1.exe
app2.exe
app3.DLL

The executables and DLLs must be in the segment’s bin subdirectory.

The installation tools remove the named executables and DLLs from the NT search path when the segment
is deleted. Refer to subsection 5.5.2.25 for more information on shared files.

Note: As with UNIX, it is a violation of the COE to use this technique
to insert the current working directory into the NT search path.

5.5.2.3 COEServices

Segments frequently require changes to services provided by the operating system. Make such requests
through the COEServices descriptor to ensure proper coordination with other segments. One or more
entries may follow each keyword.

$GROUPS (UNIX only)

Segments may add entries to the /etc/group file as follows:

46 The maximum in the previous I&RTS was limited to 15 characters. This has been extended to support
those services which describe profiles based on a combination of duty position and organization, or similar
approach.

Segment Descriptors and Descriptor Files

DII COE I&RTS: Rev 3.0 July 1997 161

$GROUPS
name:group id

where name and group id have the meaning defined by the UNIX group file. If the specified name already
exists in the group file but with a different group id, an error will be generated.

$PASSWORDS (UNIX only)

Segments may occasionally need to add entries into the UNIX password file to establish file ownership.
The syntax is:

login name:user id:group id:comment:home dir:shell

where these entries correspond to the entries in the UNIX passwd file. Multiple lines may be included to
add multiple password entries.

The installation software inserts an “*” for the password field to ensure that these are system accounts, not
actual user login accounts. Segments that need to add a user account must be approved in advance by the
Chief Engineer, and then will generally be approved only for COE-component segments.

The installation software processes the $PASSWORDS keyword before the segment is actually loaded onto
disk so that PostInstall scripts which need to set file ownership will work properly.

$SERVICES

Ports are added to the /etc/services (or NT equivalent) system file through the $SERVICES
keyword. The syntax is:

$SERVICES[:comment]
name:port:protocol{:alias}

where

name is the name of the socket to add,

port is the port number requested, and

protocol is either tcp or udp.

The optional comment, if provided, will be inserted into the /etc/services file by the installation
software.

If the port number requested is already in use under another name, an error will be generated. Note that port
numbers in the range 2000-2999 are reserved for COE component segments and may not be used by
mission application segments.

This keyword should not be necessary for most DCE applications because endpoints are defined
dynamically.

5.5.2.4 Community

Many of the descriptor files direct the installation software to insert, delete, replace or otherwise alter
blocks of text in ASCII files. The Community descriptor is provided to issue similar commands to the
installation software for which no corresponding descriptor exists. It is intended to be a “catch all” and

Segment Descriptors and Descriptor Files

DII COE I&RTS: Rev 3.0 July 1997162

should be used carefully, and only when there is no other way to accomplish the modifications required.
VerifySeg will fail any segment which attempts to use a Community descriptor to modify a file that is
already handled by another descriptor. For example, inserting a port entry into /etc/services is
handled by the COEServices descriptor so VerifySeg will fail a segment that attempts to do this
through a Community descriptor.

Segment developers shall use the Comm.deinstall descriptor to undo changes made by the
Community file. Comm.deinstall is invoked when a segment is removed and is the inverse of the
Community file. The Comm.deinstall is neither required nor useful if the segment is a permanent
segment.

The commands listed below are available for both the Community and Comm.deinstall files. Blocks
of text are delimited by braces, where the opening and closing brace are on a line by themselves. When
commands require that a textual search be done, embedded spaces and control characters are ignored
during the search.

To illustrate how the commands work, assume the file IDE.TEST contains the following text:

Sample file

Define runtime vars
setenv OPT_HOME /h/OPT
setenv OPT_DATA $OPT_HOME/data

set a test var
setenv testvar $HOME

set filec

setenv testvar2 $HOME/data

end of example file

$APPEND

Append the block of text which follows to the end of the file.

Example:

$APPEND
{
This is an example to append at the end of a file
source my_script
#
}

$COMMENT:char

Using the character specified, find the block of text which follows and comment it out. This effectively
deletes text, but has the advantage that it can easily be uncommented.

The command sequence

$COMMENT:#
{
set a test var

Segment Descriptors and Descriptor Files

DII COE I&RTS: Rev 3.0 July 1997 163

setenv testvar $HOME
set filec
}

will replace the text to modify the file as follows:

Sample file

Define runtime vars
setenv OPT_HOME /h/OPT
setenv OPT_DATA $OPT_HOME/data

set a test var
#setenv testvar $HOME
#
#set filec

setenv testvar2 $HOME/data

end of example file

Notice that the blank line between setenv and set is ignored in searching for the lines to delete, but is
preserved in the commented out version of the file.

Note: Be careful to note that the ‘#’ character is not a valid comment
delimiter for all community files! (e.g., X and Motif resource
files use ‘!’ as a comment delimiter.)

$DELETE [ALL]

Find the block of text which follows and delete it from the file. If ALL is specified, delete every occurrence
in the file.

The command sequence

$DELETE
{
set a test var
setenv testvar $HOME
set filec
}

will delete the block of text to modify the file as follows:

Sample file

Define runtime vars
setenv OPT_HOME /h/OPT
setenv OPT_DATA $OPT_HOME/data

setenv testvar2 $HOME/data

end of example file

Segment Descriptors and Descriptor Files

DII COE I&RTS: Rev 3.0 July 1997164

Notice that the blank line between setenv and set is ignored in searching for the lines to delete, but is
deleted in the resulting version of the file.

$FILE:filename

Name the file to which the commands that follow apply.

Example:

$FILE:/h/IDE/Scripts/IDE.JMCIS

$INSERT [ALL]

Find the first occurrence of the first block of text, then insert the second block of text immediately after it.
If ALL is specified, insert the second block of text after every occurrence.

Example:

$INSERT
{
setenv OPT_DATA $OPT_HOME/data
}
{
setenv OPT_BIN $OPT_HOME/bin
setenv OPT_SRC $OPT_HOME/src
}

The resulting changes to the example file are:

Sample file

Define runtime vars
setenv OPT_HOME /h/OPT
setenv OPT_DATA $OPT_HOME/data
setenv OPT_BIN $OPT_HOME/bin
setenv OPT_SRC $OPT_HOME/src

set a test var
setenv testvar $HOME

set filec

setenv testvar2 $HOME/data

end of example file

$REPLACE [ALL]

Replace the first occurrence of the first block of text, if found, with the second. If ALL is specified, replace
every occurrence.

Example:

$REPLACE
{
setenv OPT_HOME /h/OPT

Segment Descriptors and Descriptor Files

DII COE I&RTS: Rev 3.0 July 1997 165

}
{
setenv OPT_HOME /home2/OPT
}

Embedded spaces and control characters are ignored in the search, but are preserved in the replacement.
Case is preserved in the search and in the replacement.

$SUBSTR:DELETE [ALL] | INSERT [ALL] | REPLACE [ALL]

When performing a textual search, search for a matching substring instead. Insertions, deletions, or
replacements are made as indicated.

$UNCOMMENT:char

Find the block of text which follows and uncomment it. The comment character is char, but the block of
text which follows the $UNCOMMENT command does not contain the comment character.

Example (undo the effects of the $COMMENT example above):

$UNCOMMENT:#
{
set a test var
setenv testvar $HOME
set filec
}

Blank lines will also be uncommented if there are any between

set a test var

and

set filec

Consider a more complete example. The following will insert two new environment variables at the end of
the file, replace OPT_HOME with OPTION_HOME, replace OPT_DATA with OPTION_DATA, and replace
all occurrences of the substring “stvar” with “st_var”. This example also shows the use of comments.

Segment Descriptors and Descriptor Files

DII COE I&RTS: Rev 3.0 July 1997166

/* This is a multi-line comment
 just like in standard C.
*/
This is a single line comment

Assume file is in IDE Scripts subdirectory
$FILE:/h/IDE/Scripts/IDE.TEST

$REPLACE
{
setenv OPT_HOME /h/OPT
setenv OPT_DATA $OPT_HOME/data
}
{
setenv OPTION_HOME /h/OPTION
setenv OPTION_DATA $OPTION_HOME/data
}

$SUBSTR:REPLACE ALL
{
stvar
}
{
st_var
}

$APPEND
{
#------------------------
BEGIN xxx modifications
#------------------------

setenv my_var /h/IDE

#------------------------
END xxx modifications
#------------------------
}

The resulting file IDE.TEST is

Segment Descriptors and Descriptor Files

DII COE I&RTS: Rev 3.0 July 1997 167

Sample file

Define runtime vars
setenv OPTION_HOME /h/OPTION
setenv OPTION_DATA $OPTION_HOME/data

set a test var
setenv test_var $HOME

set filec

setenv test_var2 $HOME/data

end of example file
#------------------------
BEGIN xxx modifications
#------------------------

setenv my_var /h/IDE

#------------------------
END xxx modifications
#------------------------

This example shows the use of comments to enclose modifications between a BEGIN/END pair. This
technique is recommended when making modifications to community files to make it easier to determine
changes made as segments are installed.

Note: This technique is used by the installation software as
environment extension files are modified. Therefore, developers
must not put such comments in environment extension files.

5.5.2.5 Comm.deinstall

Comm.deinstall is the inverse of Community. Its purpose is to undo modifications made to
community files when a segment is removed from the system.

The corresponding Comm.deinstall file to undo the changes made in the example from the
Community subsection is:

Segment Descriptors and Descriptor Files

DII COE I&RTS: Rev 3.0 July 1997168

$FILE:/h/IDE/Scripts/IDE.TEST
$REPLACE
{
setenv OPTION_HOME /h/OPTION
setenv OPTION_DATA $OPTION_HOME/data
}
{
setenv OPT_HOME /h/OPT
setenv OPT_DATA $OPT_HOME/data
}

$SUBSTR:REPLACE ALL
{
st_var
}
{
stvar
}

$DELETE
{
#------------------------
BEGIN xxx modifications
#------------------------

setenv my_var /h/IDE

#------------------------
END xxx modifications
#------------------------
}

5.5.2.6 Compat

Subsequent releases of a segment are not always backwards compatible. The Compat descriptor is used to
indicate the degree to which backward compatibility is preserved with the newly released segment. This is
achieved by listing version numbers for previous releases which the current release supports. In the sense
used here, backwards compatibility means that the segment being released will work with other segments
that have been compiled and linked with an earlier release version.

The format of the Compat descriptor is a single line containing one of three possible entries:

+ALL This indicates that the current release is backwards compatible with all previous
releases.

-NONE This indicates that the current release is not backwards compatible with any
previous release.

version list This indicates that the current release is backwards compatible to a list of
versions. Version lists are denoted by the $LIST, $EARLIEST, and
$EXCEPTIONS keywords.

For example, suppose the new MySeg release is version 3.2.5.4 and that it is compatible with all versions
from 2.9.1 up to the present with the exception of versions 3.0.1.2 and the 3.1 version series. Then the
Compat file would contain the following entries:

Segment Descriptors and Descriptor Files

DII COE I&RTS: Rev 3.0 July 1997 169

First number listed is earliest compatible version
$EARLIEST
2.9.1
Remaining version numbers are exceptions
$EXCEPTIONS
3.0.1.2
3.1

When a digit is omitted from the version number, or an asterisk is in place of the digit, there is an assumed
wildcard in that digit position. That is, any digits would be acceptable in that position.

The $LIST keyword is used to indicate an explicit list of compatible versions. $LIST is mutually
exclusive with the $EARLIEST/$EXCEPTIONS keyword pair. When specifying a list, a range can be
indicated by the optional keyword $TO. Thus, the previous example could also have been done as

$LIST
2.9.1 $TO 3.0.1.1
3.0.1.3 $TO 3.0.9
3.2.0 $TO 3.2.5

In some cases, one or more patches must be applied to preserve compatibility. The patches are listed by
number immediately after the version number by using a colon between patch numbers. This may be done
only with the $LIST keyword. For example,

$LIST
2.9.1:P4:P5
3.0.1.1
3.0.2:P8 $TO 3.0.4:P7

This means that the current version is backwards compatible with

• 2.9.1, but only if patches P4 and P5 have been applied
• 3.0.1.1 with no restrictions regarding patches
• 3.0.2 through 3.0.4 with the restriction that patch P8 must be applied to version 3.0.2 and patch P7

must be applied to version 3.0.4.

If no Compat file exists, the present version is assumed to not be backwards compatible with any previous
releases. That is, -NONE is assumed.

5.5.2.7 Conflicts

Two segments may conflict with one another so that one or the other, but not both, can be installed. The
Conflicts descriptor is used to specify such inter-segment conflicts. The format is a list of conflicting
segments in the form:

segment name:prefix:home dir[:version{:patch}]

where segment name is the name of the conflicting segment as given in the segment’s SegName descriptor
file, prefix is the conflicting segment’s segment prefix, and home dir is the conflicting segment’s home
directory.

The Conflicts descriptor is essentially the inverse of the Requires descriptor.

Segment Descriptors and Descriptor Files

DII COE I&RTS: Rev 3.0 July 1997170

5.5.2.8 Data

The Data descriptor is used to describe where data files are to be logically loaded and their scope (global,
local, or segment). Only one of the three scopes may be specified in the descriptor; that is, a data segment
has one and only one scope.

The syntax is

$SEGMENT:segname:prefix:home dir

for segment data, or

$LOCAL:segname:prefix:home dir

for local data, or

$GLOBAL:segname:prefix:home dir

for global data, where segname, prefix, and home dir refer to the affected segment. The segname and prefix
must match the name given in the affected segment’s SegName descriptor. Figure 5-9 shows that the data
to install is underneath the segment’s data subdirectory.

5.5.2.9 Database

The Database segment descriptor is used to identify information such as object dependencies that are
within the database and therefore cannot be resolved without the use of the DBMS. There are five
keywords used under this descriptor to track object-level information: $REFERENCES, $MODIFIES,
$ROLES, $SCOPE, and $ACCESSES. The first four are used by database segments, the last is used by
database application segments. Their usage is discussed below.

$SCOPE:scope

This keyword specifies the scope of the database objects. Legal values for scope are UNIQUE, SHARED,
and UNIVERSAL. Scope is required for database segments, but it is not presently used. It is reserved for
future use and required now so that segments will not require modifications later.

$REFERENCES

The $REFERENCES keyword is followed by a list of the individual database objects that the database
segment depends upon which are external to the segment. The Requires segment descriptor must be
used to state a dependency upon the segments whose objects are listed under $REFERENCES. Version
compatibility will be checked using the Requires descriptor so it is not repeated here. The format for the
object list is

$REFERENCES
object name:schema

For example, assume that the GSORTS database segment references the COUNTRY_CODE table in the
S&M segment and the PORTS table in the NID segment. The schema owners for S&M and NID
respectively are TABLE_MASTER and NID. The appropriate descriptor is

$REFERENCES
COUNTRY_CODE:TABLE_MASTER
PORTS:NID

Segment Descriptors and Descriptor Files

DII COE I&RTS: Rev 3.0 July 1997 171

$MODIFIES

The $MODIFIES keyword is followed by a list of the external database objects that the database segment
modifies by adding triggers, or by including them in procedures or functions. All segments whose objects
are listed here must also appear under the Requires descriptor. The format for the object list is

$MODIFIES
object name:schema:modification type:modification name

The object name and schema follow the same rules as the $REFERENCES keyword. Modification type is
used to stipulate what has been done. Its legal values are TRIGGER for database triggers or PROCEDURE
for database functions, procedures, or packages. Modification name is the name of the trigger or procedure
that is attached to the object. An example follows defining a trigger named GSORTS_NID_COPY that is
attached to the NID database’s PORTS table.

$MODIFIES
PORTS:NID:TRIGGER:GSORTS_NID_COPY

$ROLES

The $ROLES keyword is followed by a list of the database roles created by the database segment. Its
format is

$ROLES
role name

An example that defines two roles follows.

$ROLES
EWIR_RO
EWIR_DATA1_RW

It is recommended that comments be placed in the segment descriptor to describe what these roles are for
and how they are intended to be used. This is a convenient place to document such important information.

$ACCESSES

The $ACCESSES keyword is used in a software segment rather than a database segment. It associates
individual applications within a software segment to their supporting database roles. Its format is

$ACCESSES
application name:role name:segment name

The application name is the name of the executable within the segment. Role name is the name of the
database role used by the application. segment name is the name of the database segment that owns that
role. That segment will be searched by the installer tool, if necessary, to obtain the DBO account name. An
example follows associating the EWIR_WIDE application to the EWIR_RO role.

$ACCESSES
EWIR_WIDE.FMX:EWIR_RO:EWIRDB

Note: Do not confuse the Database segment descriptor with the
database segment type. The segment descriptor, described in this

Segment Descriptors and Descriptor Files

DII COE I&RTS: Rev 3.0 July 1997172

subsection, describes specialized processing for the COE to
perform on a segment which is of segment type ‘database.’

5.5.2.10 DCEClientDef

This segment descriptor is used to define the characteristics of DCE Clients. The server installation script
reads the DCEClientDef section from the SegInfo file for installation specific information. The
associated keywords are used to describe the DCE client.

Table 5-6 lists the keywords applicable to DCE segments that use the DCE COE application development
library. As indicated in the table, some are for servers only, some are for clients only, and some may be
used for both client and server segments. For a more complete description of these keywords and the use of
the DCE COE library please refer to the DII COE DCE Programmers Guide.

Keyword Client Server
ACLMGRDEFAULT n/a M
ACLMGRINFO n/a O
ACLMGRTYPE n/a O
ACLMGRUUID n/a O
ATTRIBUTE O O
AUDITINFO n/a O
DCEACL n/a *
DCEADMINGROUP n/a O
DCEBOOT n/a O
DCECLIENT M n/a
DCEGROUP O O
DCESERVICE n/a M
DEBUGMESSAGES n/a O
DFSFILES O O
INTERFACE M M
MESSAGES n/a O
MGMTMAPPING n/a O
OBJUUID n/a M
PERMISSION n/a M
RPCSECURITY n/a O
SERVERTHREADS n/a O
SERVICEABILITY n/a O
UUID n/a M

Legend: M - Mandatory O - Optional
n/a - Not Applicable * - Reserved for Future Use

Table 5-6: DCE Client and Server Keywords

$ATTRIBUTE

The format for this keyword is the same for both clients and servers. Refer to subsection 5.5.2.11 for a full
description.

$DCECLIENT client:title

Segment Descriptors and Descriptor Files

DII COE I&RTS: Rev 3.0 July 1997 173

client is the name of the client application and title is a brief description of the client application. DCE
client segments require the $DCECLIENT keyword. This provides the name of the client application and
annotation.

Example:
$DCECLIENT CALCclient:Basic calculator client

$DCEGROUP

The format for this keyword is the same for both clients and servers. Refer to subsection 5.5.2.11 for a full
description.

$DFSFILES

The format for this keyword is the same for both clients and servers. Refer to subsection 5.5.2.11 for a full
description.

$INTERFACE client:server:CDS entry

The $INTERFACE keyword identifies the name of the server and the location of the rpcprofile used
to initiate servers. client is the name of the client application, server is the identity of a server used by the
client, and CDS entry is the location in the Cell Directory Service (CDS) of an rpcgroup or
rpcprofile used to initiate a search for servers. A client may make use of multiple servers, including
servers offered by other segments.

Example:

$INTERFACE CALCclient:CALCserver:/.:/h/CALC/groups/servergroup

Note: Segments which use the DCEClientDef descriptor must also
indicate the DCE segment attribute or else the COE tools will
issue a fatal error.

5.5.2.11 DCEServerDef (UNIX Only)

This segment descriptor is used to define characteristics of DCE servers. It is not required, nor is it legal,
for DCE client applications. The associated keywords are used to describe the server. The server
installation script reads the DCEServerDef section from the SegInfo file for installation specific
information. Table 5-6 lists the applicable keywords for describing DCE servers. Note that some of the
keywords are also used for describing characteristics of client segments.

Most of these keywords are used by the standard DCE installation program to set attributes in CDS, to
include attributes within the configuration entry for the application. Refer to the DII COE DCE
Programmer’s Guide for more information.

Before describing the applicable keywords, there are some important things to note about DCE servers.

• Use $DCESERVICE instead of the $SERVERS keyword (Network descriptor) to define DCE-based
servers.

• Document Distributed File Service (DFS) files with the $DFSFILES keyword.

• Include a $PASSWORDS entry in COEServices to establish a UNIX userid for each server principal.

Segment Descriptors and Descriptor Files

DII COE I&RTS: Rev 3.0 July 1997174

• Developers should normally provide a single DCE server in a segment. It would be unusual to need to
provide more than one.

Note: Segments which use the DCEServerDef descriptor must also
indicate the DCE segment attribute or else the COE tools will
issue a fatal error.

 $ACLMGRDEFAULT service:interface:type:name:permissions

Values of the AclMgrDefault attribute are used to give the server ACL an initial set of values. This attribute
is multi-valued and can contain any combination of ’group’ or ’user’ ACL entries. The meaning of the
parameters are:

• service – The name of the server application. This is the same value as found in the $DCESERVICE
service field.

• interface – The name of an interface implemented by the server. This interface must match the
interface name defined in an IDL file and as defined in the $INTERFACE keyword.

• type - one of the following values:
• USER
• GROUP
• ANY_OTHER
• UNAUTHENTICATED

• name - Used with USER or GROUP to identify the specific user or groups.
• permissions - This field is defined in the $PERMISSION keyword. The values used are defined in the

name field.

 Following are examples of the $ACLMGRDEFAULT keyword:

$ACLMGRDEFAULT CALCserver:calculator:GROUP:CALC-users:ast
$ACLMGRDEFAULT CALCserver:calculator:UNAUTHENTICATED:t

$ACLMGRINFO service:mgr_name:desc

This keyword provides ACL management information. The parameters are:

• service - The name of the server application. This is the same value as found in the $DCESERVICE
service field.

• mgr_name - The ACL manager name.
• desc - A description (annotation) of the Reference Monitor.

The following is an example:

$ACLMGRINFO CALCserver:calculators:Sample Calculator Refmon

If this keyword is omitted, the ACL manager is given the same name as the server application (e.g.,
CALCserver).

 $ACLMGRTYPE service:obj_type:structure_type

 This keyword is reserved to define the structure and type of the data file used to support the standard ACL
Manager. It can contain one or more of the supported object types and one of the structure types. The
meaning for each parameter follows.

Segment Descriptors and Descriptor Files

DII COE I&RTS: Rev 3.0 July 1997 175

• service - The name of the server application. This is the same value as found in the $DCESERVICE

service field.
• obj_type - The following object types have been defined:

• aclobject - supports ACLs on simple objects
• defobject - supports default inheritance ACLs on objects
• defcontainer - supports default inheritance ACLs on containers

 If the keyword is omitted, the default is aclobject.
• structure_type - The following structural attributes are defined:

• flat - the database contains no hierarchical structure
• hier - the database supports full hierarchy (e.g. a filesystem)
• bilevel - the database does not support containers within containers
• sparse - the database supports sparse searching
• noleaf - the database permits hierarchy but only as a side effect of creating a leaf

If the keyword is omitted, the default is flat.

Note: The initial release supports only flat, bilevel, and hier.

The following is an example:

$ACLMGRTYPE CALCserver:aclobject:flat

$ACLMGRUUID service:uuid

Every ACL manager defines a UUID that represents a set of permissions supported by the ACL manager.
This keyword allows the user to define this UUID. The parameters are:

• service - The name of the server application. This is the same value as found in the $DCESERVICE
service field.

• uuid - The combined major and minor version numbers identify one generation of an interface

If the keyword is omitted, a new unique ID is automatically generated.

The following is an example:

$ACLMGRUUID CALCserver:6ba40bf6-e2ee-11cf-8d13-ce9cdd02aa77

 $ATTRIBUTE name:[uuid]:multivalued:encoding:annotation

 The DCE COE library makes use of pre-defined attributes within the CDS configuration entry for an
application. The application can define additional attributes by using the $ATTRIBUTE keyword. The
COE installation process uses this keyword to define the attribute in the CDS schema.

 Each attribute type definition in the schema consists of attribute type identifiers (UUID and name) and
semantics that control the instances of attributes of this type. An attribute instance is an attribute that is
attached to an object and has a value (as opposed to an attribute type, which has no values but simply
defines the semantics to which attribute instances of that attribute type must adhere). Attribute instances
contain the UUID of their attribute type.

 The identifiers of attribute types are a name and a UUID. Generally, the name is used for interactive access
and the UUID for programmatic access. The client can also have $ATTRIBUTE entries so take care not to
confuse the two.

Segment Descriptors and Descriptor Files

DII COE I&RTS: Rev 3.0 July 1997176

 The meaning of each parameter follows:

• name - The name of the attribute.
• uuid - The UUID of the attribute.
• multivalued - Legal values are yes or no. The multivalued flag specifies whether or not multiple

instances of the attribute can be attached to a single application. For example, if the multivalued flag is
set yes, a single application can have multiple instance of attribute Type A. If the flag is set to no, a
single application an have only one instance of attribute Type A.

• encoding - This defines the legal encoding for instances of the attribute type. The encoding controls the
format of the attribute instance values, such as whether the attribute value is an integer, string, a UUID,
or a vector of UUIDs that define an attribute set. Legal values for this parameter are: any, void,
printstring, stringarray, integer, byte, uuid, i18n_data, attrset, and
binding.

• annotation - The annotation field is text that describes the function of the attribute.

 The following is an example (this is intended to be a single line):

$ATTRIBUTE unknown_intercell_comms:171e0ff2c-d12e-11de-dd7b-
080009353559:no:integer:Handles intercell access control for foreign
users

$AUDITINFO service:first:num_events:msg code

This keyword establishes the audit event numbering and message code capability. The parameters are:

• service - The name of the server application. This is the same value as found in the
$DCESERVICE service field.

• first - The first number of the audit event.
• num_events - The number of events.
• msg code - 3-character message component for events (see the $SERVICEABILITY keyword)

The following is an example:

$AUDITINFO CALCserver:281587713:2:CAL

 $DCEADMINGROUP groupname

 Members of this group are used to control administrative access to application
information. These members are able to change acl’s, add members to groups, start/stop
servers, install/deinstall clients and servers.

• groupname - The administrative group name is normally composed of the segment prefix and the word

“admin.” Therefore if the segment prefix is CALC, the default group name for administration is
CALC-admin. The default setting is SEGMENT-admin.

 The following is an example:

 $DCEADMINGROUP CALC-admin

Segment Descriptors and Descriptor Files

DII COE I&RTS: Rev 3.0 July 1997 177

$DCEBOOT service:starton

The $DCEBOOT attribute identifies when a server should be started. The value is a list of one or more of
the following which may not be modified after creation.
• service - The name of the server application. This is the same value as found in the $DCESERVICE

service field.
• starton - One or more of the keywords can be used but must be separated by semicolons.

• auto - Start if a remote call that would be serviced by this server is received by dced. This
is ignored for those servers that are repositories.

• boot - Start at system startup.
• explicit - Start if dced receives a command to start the server (such as the server start

command in dcecp).
• failure - Start if dced detects that the server exited with a non-successful error code.

Following are several examples of the $DCEBOOT keyword:

$DCEBOOT CALCserver:boot;explicit;failure

This example states that the CALCserver is started at boot time. If the server exits with a non-successful
error code it will automatically be restarted. The server can also be started from the command line.

$DCEBOOT CALCserver:boot;failure

This examples shows the CALCserver starting only at boot time and when a error has occurred.

 $DCEGROUP groupname

 Additional groups may be needed for specific applications. For example a CALC-adders group might be
created for a calculator application containing users who are allowed to perform the add operation but not
the subtract, division or multiplication functions.

• groupname - The name of a user group used to control access to the server services. The group

servername-users is automatically created and does not require a $DCEGROUP entry..

 The following is an example:

 $DCEGROUP CALC-adders

$DCESERVICE service:UNIXid[:principal[:group[:org]]]

DCE server segments require the $DCESERVICE keyword. This provides the name of the server
application, ownership and run time authentication principle. The applicable parameters are:

• service – The name of the server application. A segment may contain multiple servers. When there is
only one server in a segment, the name should be SegPrefserver where SegPref is the segment
prefix. When there are multiple servers in the segment, each one is identified by a separate
$DECSERVICE entry and should be uniquely named using the segment prefix.

• UNIXid – The UNIX account used in running the server. Usually supplied by a separate $PASSWORD
keyword.

• principal – The name for the DCE principle to use in running the server. Default is the same as the
server.

• group – The group used to control access to server CDS entries. Each server principal belongs to this
group. Default is SEGMENT-servers.

Segment Descriptors and Descriptor Files

DII COE I&RTS: Rev 3.0 July 1997178

• organization – The DCE organization for the server principal accounts. Default is none.

 The following is an example of a $DCESERVICE entry with the minimum required parameters:

 $DCESERVICE CALCserver:CALC

Note: The UNIX account must exist before the segment is installed.

Otherwise the installation will be unsuccessful.

 The following is an example which uses all the parameters:

 $DCESERVICE CALCserver:CALC:CALC:engineering:acom

 In this example the install script will create the DCE account CALC, the group
engineering and the organization acom, if they do not already exist. If these fields
are blank the principal used in running the server is CALCserver, the group is none,
and the organization is none.

 $DEBUGMESSAGES service:routing

 service is the name of the service (e.g., CALCserver) and routing specifies how and where the debug
message should be sent. The format for routing is:

 component:sub_comp.level,...:out_form:dest[;out_form:dest...]
[GOESTO:{sev | component}]

 where out_form, dest, and sev have the same meanings as for the $MESSAGES keyword. component is the
three-character serviceability component code for the program whose debug message levels are being
specified, sub_comp.level is a serviceability subcomponent name, followed (after a dot) by a debug level
(expressed as a single digit from 1 to 9). Nine serviceability debug message levels (specified respectively
by single digits from 1 to 9) are available. The precise meaning of each level varies with the application or
DCE component in question, but the general notion is that ascending to a higher level (for example, from 2
to 3) increases the level of informational detail in the messages. Setting debug messaging at a certain level
means that all levels up to and including the specified level are enabled.

Note: Multiple subcomponent/level pairs can be specified. If there are
multiple subcomponents and it is desired to set the debug level to
be the same for all of them, then the form:
component:*.level will do this (where the * is used as a
wildcard to specify all subcomponents).

 The following are examples of $DEBUGMESSAGES:

 $DEBUGMESSAGES CALCserver:coe:*.9:STDOUT:-
 $DEBUGMESSAGES CALCserver:coe:*.4:TEXTFILE:/tmp/log_%ld;STDERR:-

$DFSFiles

This keyword is similar in purpose to the FilesList segment descriptor (subsection 5.5.2.13). It is used
instead of FilesList because the files listed are maintained by DFS, not by the native operating system.
The keyword is followed by a list of filenames in the form:

filename access

Segment Descriptors and Descriptor Files

DII COE I&RTS: Rev 3.0 July 1997 179

where filename is the DFS filename used by the application, and access indicates the operations performed
on the file (RWX). All file names shall start with /.../cellname/fs/.

This keyword is provided for information only.

 $INTERFACE service:interface:title

 The $INTERFACE keyword defines the server interface as presented in the IDL file. This information
must match exactly. The $INTERFACE keyword describes a set of runtime routines that allows a client
program to use a particular service provided by another application program. The parameters are:

• service – A service entry (server application) from the $DCESERVICE keyword.
• interface – The name of an interface implemented by the server. This interface must match the

interface name defined in an IDL file.
• title - The title of the interface, used as an annotation in the DCE endpoint map.

Example:

$INTERFACE CALCserver:calculator:Basic Sample calculator Application

$MGMTMAPPING service[:string]

This keyword is used to control and configure the management functions that all DCE applications support.
Management functions allow a client to request interface information, server principal name, or statistics
from the server, to ping the server, or to stop the server. There are five management operations that define
the relationship between permissions understood by the ACL manager/Reference monitor permissions.
This keyword defines the permissions that must be present to allow the client to perform the management
function. The ACL to be checked is attached to the srvrexec object for the server.

The parameters are:

• service - The name of the server application. This is the same value as found in the $DCESERVICE
service field.

• string - The permissions to allow the client to perform management function. If the $MGMTMAPPING
keyword is not specified or this parameter is omitted, ttttc is assumed which represents the standard
'test' and 'control' permissions.

The following is an example:

$MGMTMAPPING CALCserver:ttttc

 $MESSAGES service:routing

The $MESSAGES and $DEBUGMESSAGES keywords are used to set DCE serviceability options. The
parameters are:

• service - is the name of the service (Same as in $DCESERVICE)
• routing - how to route messages to their destination. This parameter is of the form

sev:out_form:dest[;out_form:dest . . .] [GOESTO:{sev | comp}]

where

Segment Descriptors and Descriptor Files

DII COE I&RTS: Rev 3.0 July 1997180

• sev - Specifies the severity level of the message, and must one of the following: FATAL, ERROR,
WARNING, NOTICE, or NOTICE_VERBOSE. If the message is to apply to all severity levels, use the
wildcard character * as the severity level value.

• out_form - Specifies how (e.g., output form) the messages of a given severity level should be
processed. The legal values are BINFILE, TEXTFILE, FILE, DISCARD, STDOUT, or STDERR.
out_form may be followed by a two-number specifier of the form: .gens.count where gens is an integer
that specifies the number of files (i.e., generations) that should be kept and count is an integer
specifying how many entries (i.e., messages) should be written to each file. The wildcard character *
may be used for gens or count to indicate an unlimited number of generations or messages
respectively.

• dest - Specifies where (e.g., destination) the message should be sent and is a pathname. Filenames may
not contain colons or periods. The field can be left blank if the out_form specified is DISCARD,
STDOUT, or STDERR. The field can also contain the C formatting string %ld in the filename which,
when the file is written, will be replaced by the process ID of the program that wrote the message.
Multiple routings for the same severity level can be specified by adding the additional desired routings
as semicolon-separated strings in the following format:
 NOTICE:BINFILE.50.100:/tmp/log%ld;STDERR:-

• GOESTO - Permits messages for the severity whose routing specification it appears in to be routed to
the same destination as those for the other specified severity level. Examples are:
 WARNING:STDERR:GOESTO:FATAL
 FATAL:STDERR:;FILE:/tmp/foo
This means that WARNING messages should show up in three places: twice to stderr, and then once
to the file /tmp/foo.

 The following is an example of the $MESSAGES keyword:

 $MESSAGES CALCserver:*:STDOUT:-

 $OBJUUID service:interface:objuuid

 Standard DCE has the ability for servers to associate themselves with “objects”
(identified by uuid’s), and for clients to request a binding to any server providing a
specified object. The objects supported by a server are identified within its rpcentry
within CDS. This facility is designed to allow the location of coarse-grained objects (e.g.
specific branches of a bank, or classes of users). It is not designed for fine-grained objects
(e.g. an individual account in a bank).

 The DCE COE library allows the use of this capability. The server is responsible for registering supported
objects using standard DCE calls. The client must have the uuid’s of desired objects pre-configured within
its services attribute for the appropriate interface.

• service - name of service (same as that listed in the $DCESERVICE keyword)
• interface - name of the interface (same as identified in the $INTERFACE keyword)
• objuuid - The universal unique identifier that identifies a particular RPC object. A server specifies a

distinct object UUID for each of its RPC objects; to access a particular RPC object, a client uses the
object UUID to find the server that offers the object.

• Sometime the object UUID is the “nil” UUID; when calling an RPC runtime routine, you can
represent the nil UUID by specifying NULL. In this case, the object UUID does not represent
any object.

 The following is an example of the $OBJUUID keyword:

Segment Descriptors and Descriptor Files

DII COE I&RTS: Rev 3.0 July 1997 181

 $OBJUUID CALCserver:calculator:01eb03d6-0688-1acb-97ad-08002b12b8f8

 $PERMISSION service:interface:permission:name:value

 The $PERMISSION keyword is used to define a set of access controls to maintain control over the
interface. There are several ACL bit permissions that are recommended by OSF, listed in Table 5-7.
Additional powers of 2 may be used for application-specific permissions. In the examples, values 128 and
256 are extensions specific to the CALC example. These values provide ACL management for the add and
subtract interface.

Permission Name Value
r read 1
w write 2
e execute 4
c control 8
i insert 16
d delete 32
t test 64

 Table 5-7: Recommended ACL Bit Permissions

The meaning for each parameter is as follows:
• service – A service entry (server application) from the $DCESERVICE keyword
• interface – The name of an interface implemented by the server. This interface must match the

interface name defined in an IDL file.
• permission - A single character value used within ACL permission strings.
• name - A short title for the permission, used primarily as a comment.
• value - A numeric value for the permission. Must be a power of two. If possible, choose a permission

value from Table 5-7 but additional values may be used if necessary. The assignment of different
meanings to the values in this table is strongly discouraged.

 The following are examples of entries in the SegInfo file:

 $PERMISSION CALCserver:calculator:c:control:8
 $PERMISSION CALCserver:calculator:t:test:64
 $PERMISSION CALCserver:calculator:a:add:128
 $PERMISSION CALCserver:calculator:s:substract:256

 $RPCSECURITY service:interface:security

 The $RPCSECURITY keyword specifies the protection levels supported. These levels identify how much
information in network messages is encrypted.

• service - is the name of the service implementing the interface (Same as in $DCESERVICE)
• interface - is the name of the interface (Same as in $INTERFACE)

The security parameter is composed of several fields:

authentication type:[principle name:protection level:authentication
service:authorization service]

where

Segment Descriptors and Descriptor Files

DII COE I&RTS: Rev 3.0 July 1997182

authentication type is one of the following:

• none - This type has no further information.
• dce - This type is followed by the following fields:

• principle name
• protection level - one of the following values:

• default - Uses the default protection level for the specified authentication service.
• none - There is no protection level.
• connect - Performs authentication only when a client and server establish a

relationship (or connection). This level performs an encrypted handshake when the
client first communicates with the server. Encryption or decryption is not performed
on the data sent between the client and server.

• call - Attaches a verifier to each client call and server response that protects the
system -level metadata of every RPC call (but not the application-level data). This
level does not apply to remote procedure calls made over a connection-based
protocol sequence.

• pkt - Ensures that all data received is from the expected client. This level attaches a
verifier to each message.

• pktinteg - In addition to protecting metadata, ensures the integrity of the
application-level data (RPC call and return parameters) transferred between two
principals, that is, that none of it has been modified in transit.

• pktprivacy - In addition to protecting metadata and integrity, encrypts all
application-level data, thus guaranteeing its confidentiality.

• authentication service - one of the following:
• default - DCE default authentication service.
• none - No authentication.
• secret - DCE shared-secret key authentication.

• authorization service - This is the process of checking a client’s permissions to an object that
is controlled by the server. Access checking is entirely a server responsibility. Possible values
are:

• default - No authorization information is provided to the server, usually because
the server does not perform access checking.

• name - Only the client principal name is provided to the server. The server can then
perform authorization based on the provided name.

• dce - The client’s credentials is provided to the server with each remote procedure
call that is made using the binding parameter.

 Examples of the $RPCSECURITY keyword are:

$RPCSECURITY CALCserver:calculator:dce:CALCserver:default:default:dce
$RPCSECURITY CALCserver:calculator:dce:CALCserver:pktprivacy:secret:dce

$SERVERTHREADS service:num_threads

This keyword defines the number of call threads that the DCE runtime creates in order to service incoming
RPC requests. Parameters are:

• service - The name of the server application. This is the same value as found in the $DCESERVICE
service field.

• num_threads - The number of threads allocated. If not specified the default is 5.

The following is an example:

Segment Descriptors and Descriptor Files

DII COE I&RTS: Rev 3.0 July 1997 183

$SERVERTHREADS CALCserver:5

 $SERVICEABILITY service:code

 This keyword identifies the serviceability message code for the application, as defined in the application
serviceability messages file. The serviceability messages file defines message text and audit message
numbers for use by the application. All serviceability messages contain a six-letter sequence identifying the
“technology” and “component” that generated the message.47 Determine a three-letter lower case
component name for the application derived from the segment prefix (e.g., In the example used in this
subsection, CALC is the segment prefix so the “component” part is cal). These three letters will appear on
every system-generated message from the application. Insert the component name in the front of the SAMS
file, as shown in the sample below. There are no differences in defining a SAMS file for a COE application
compared to any other DCE application.

Note: If using the sample application CALC.sams file as a template,
there are numerous places where the component name is used in
variable names by convention, and must be changed for a
different application.

 # Part I
 # This part defines the lowest-level table, the one that contains
 # all the messages (defined in the third part) in a
 # straight array.
 component cal
 table cal_table
 technology dce

 The DCE COE library functions make use of the OSF DCE 1.1 serviceability interfaces to generate and
manage error messages. The server management interface allows messages of different severity to be
turned on or off and routed to different locations (e.g. error log, stderr, etc.).

 The parameters for this keyword are:

• service - is the name of the service (Same as in $DCESERVICE)
• code – This is a three-letter component used to identify serviceability message files and serviceability

messages for this server. It can be a number or lower case text.

 The following is an example of a $SERVICEABILITY keyword:

 $SERVICEABILITY CALCserver:cal

 $UUID service:interface:uuid version

 This is the interface UUID. Each DCE interface has a unique identifier (UUID) to ensure compatibility of
the client and server. This UUID identifies a specific RPC interface. An interface UUID is declared in an
RPC interface definition (an IDL file) and is required element of the interface and the SegInfo file.

• service – A service entry (server application) from the $DCESERVICE entry

 47 Applications are supposed to be identified with the technology dce and an identifying number assigned
by the OSF. Until a block of numbers are assigned for COE applications, a unique component name
derived from the segment prefix should be used.

Segment Descriptors and Descriptor Files

DII COE I&RTS: Rev 3.0 July 1997184

• interface – The name of an interface implemented by the server. This interface must match the
interface name defined in an IDL file.

• uuid version - The combined major and minor version numbers identify one generation of an interface.
Version numbers (1.0) allow multiple versions of an RPC interface to coexist. Strict rules govern valid
changes to an interface and determine whether different versions of an interface are compatible. The
offered and requested interface are compatible under the following conditions:

• The interface requested by the client and the interface offered by the server have the same

major version number
• The interface requested by the client has a minor version number less than or equal to that of

the interface offered by the server.

 An example of the $UUID keyword is:

 $UUID CALCserver:calculator:0073a028-fbdb-1e53-908e-08002b13ca26 1.0

5.5.2.12 Direct

The segment descriptor Direct allows a segment to issues special instructions to the installation tools. If
the segment is part of an aggregate, the directives below apply only to the segment in whose SegDescrip
subdirectory the directives appear.

$ACCTADD:executable

This keyword informs the installation software that the specified executable, in the segment’s bin
subdirectory, should be run each time a user account is added to the system. VerifySeg will flag use of
this keyword as a warning to highlight that it is being used. Prior permission must be given by the Chief
Engineer before this keyword can be used.

$ACCTDEL:executable

This keyword informs the installation software that the specified executable, in the segment’s bin
subdirectory, should be run each time a user account is deleted from the system. VerifySeg will flag use
of this keyword as a warning to highlight that it is being used. For security reasons, prior permission must
be given by the Chief Engineer before this keyword can be used.

$CMDLINE

Segments which provide a command-line access must insert this keyword in their segment.

$KEY:request:key

Several of the keywords presented here require authorization by the Chief Engineer. Thus, $KEY must be
provided for each requested permission. key is the authorization key provided by the Chief Engineer.
request is an indication of the type of request being made. Requests are grouped by the type of request
being made (e.g., security-related, installation-related) and are one of the following values:

INSTALL for permission to run PostInstall, PreInstall, and
DEINSTALL with root permission

ACCTS to use any of the account creation/deletion keywords (e.g., for
$ACCTDEL, $ACCTADD, $PROFADD, $PROFDEL, and
$PROFSWITCH)

CMDLINE to use the $CMDLINE keyword
SUPERUSER to use the $SUPERUSER keyword

Segment Descriptors and Descriptor Files

DII COE I&RTS: Rev 3.0 July 1997 185

A separate authorization key and $KEY entry is required for each request group, but the key applies to any
and all requests within that group.

$NOCOMPRESS

The MakeInstall tool automatically compresses segments to reduce the amount of space required on
disk or tape, and to reduce the download time. The installation tools automatically decompress segments at
installation time. The $NOCOMPRESS keyword indicates that compression is not to be performed.

$PROFADD:executable

This keyword operates in the same fashion as $ACCTADD, except that it is used when profiles are added to
the system.

$PROFDEL:executable

This keyword operates in the same fashion as $ACCTDEL, except that it is used when profiles are added to
the system.

$PROFSWITCH:executable

This keyword is similar to $PROFADD except that the executable is run whenever a user currently logged
in switches from one profile to another. The executable is not run when the user first logs in; it is run only
when a profile switch is made.

$READ_ONLY

This keyword informs the installation software that the segment can be run from a read-only medium (e.g.,
CDROM). This implies that the segment does not modify any files under its installation directory.

$REBOOT

The presence of this keyword indicates that the installation software should automatically reboot the
computer after the segment is loaded. If several segments have been selected for loading at one time, the
reboot operation will not occur until all segments have been processed. The operator will be notified before
the reboot occurs and given the option to override the reboot directive.

$REMOTE[:XTERM | :CHARBIF]

This keyword indicates that the functions (all functions) provided by this segment can be executed
remotely. At installation time, the installation software will note that this segment can be executed
remotely. If the XTERM attribute is present, it indicates that the segment can also be accessed via an
“xterm” capability, and output will be routed to the display surface pointed to by the DISPLAY
environment variable setting. If the CHARBIF attribute is present, it indicates that the segment supports a
character-based interface. CHARBIF and XTERM will normally be mutually exclusive.

By default, segments are assumed to be locally executable only.

Segment Descriptors and Descriptor Files

DII COE I&RTS: Rev 3.0 July 1997186

$ROOT:PostInstall | PreInstall | DEINSTALL

The presence of this keyword indicates that the specified descriptor must be run with root privileges. A
separate $ROOT entry is required for each descriptor. VerifySeg will flag use of this keyword as a
warning to highlight that it is being used. For security reasons, prior permission must be given by the Chief
Engineer before this keyword can be used. $ROOT requires the $KEY keyword as well.

$SELF_CONTAINED

This keyword informs the installation software that the segment remains in its original condition after
installation, with all files intact under the installation directory. It also informs the installation software that
any changes made during installation (e.g. in PreInstall and PostInstall) do not have side effects
if run multiple times. This allows the installation software to use an installed version of this segment as the
source medium for a subsequent installation on another machine.

$SUPERUSER

Segments which provide or require superuser privileges, via a command-line or otherwise, must insert this
keyword in their segment. Note that the $KEY keyword must also be used to verify that Chief Engineer
approval has been obtained.

$USES_UNINSTALL

This keyword applies to NT segments only. The segment installer software normally handles registration of
“uninstall” information for segments. However, some segments, particularly COTS segments, may already
do this themselves. In such cases, the segment must use the $USES_UNINSTALL keyword to indicate to
the segment installer that the segment itself is handling uninstall registration. When this keyword is present,
the segment installer does not perform any uninstall registration during installation. This keyword may only
be used for COTS segments or as authorized by the Chief Engineer.

5.5.2.13 FilesList

FilesList is a list of files and directories that make up the current segment. It is required for COTS
segments. For other segment types, it is useful for documenting community files modified or used by the
segment. The reason that this descriptor is required for COTS segments is that COTS products do not
usually conform to the DII-mandated directory structure. Therefore, the location of files modified by or
contributed by the segment is not usually readily apparent.

FilesList may contain the following keywords:

$DIRS a list of directories which this segment adds to the system. All files in the directory
are assumed to belong to the segment.

$FILES a list of files which this segment adds to the system.

$PATH a shortcut for specifying a pathname. Succeeding $DIRS or $FILES are relative
with respect to the path specified.

A keyword must precede any list so that it will be clear whether a directory or a file is intended.

As an example, assume a segment to be installed creates the following four subdirectories

/h/data/test/data1
/h/data/test/data2
/h/data/opt/data3

Segment Descriptors and Descriptor Files

DII COE I&RTS: Rev 3.0 July 1997 187

/usr/opt/temp

and adds three files (f1, f2, f3) to the /etc subdirectory. Then the file FilesList could contain the
following entries:

$PATH:/h/data
$DIRS
test/data1
test/data2
opt/data3
$DIRS
/usr/opt/temp
$PATH:/etc
$FILES
f1
f2
f3

The $DIRS keyword before /usr/opt/temp is not necessary, but is shown to illustrate that
FilesList may contain multiple occurrences of the keywords.

For COTS products, this descriptor must be used to list:

1. all files and directories the product adds that lie outside the segment’s assigned directory, and
2. any community file the COTS product modifies unless the modification is made by the COE

installation tools.

For example, assume a COTS segment adds a port to /etc/services through the COEServices
segment descriptor. Further, assume that the vendor provides a program that directly modifies the
/etc/group file as part of the installation process. Then FilesList must list /etc/group but does
not need to include /etc/services because the installation tool modifies it as a result of the
COEServices descriptor.

5.5.2.14 Hardware

The Hardware descriptor defines the computing resources required by the segment. Keywords $CPU and
$MEMORY may appear only once; both are required for all segments, except that $MEMORY may be omitted
for a data segment. $DISK and $PARTITION are mutually exclusive, but one must appear in the segment
descriptor. $DISK may appear only once, but $PARTITION may appear multiple times. $OPSYS and
$TEMPSPACE are optional.

$CPU:platform | ALL

platform is one of the supported platform constants listed in subsection 5.3 for MACHINE_CPU, or ALL. If
ALL is given, it indicates that the segment is hardware independent (e.g., a data segment). If platform is a
generic constant (e.g., HP or PC), it applies to all platforms of that class. Thus,

$CPU:PC

indicates that the software can be loaded on any PC, whether the PC is a 386, 486, or Pentium class
machine. However,

$CPU:PC386

Segment Descriptors and Descriptor Files

DII COE I&RTS: Rev 3.0 July 1997188

indicates that the software can be loaded on a 386 or better class platform. Similarly, HP712 indicates that
the software can be loaded on an HP712 or better class platform that is binary compatible with the HP712.

$DISK:size[:reserve]

size is expressed in kilobytes and is the size of the segment, including all of its subdirectories, at install
time. The COE tool CalcSpace (see Appendix C) will compute the disk space occupied by a segment
and update this keyword. reserve is also expressed in kilobytes and is the additional amount of disk storage
to reserve for future segment growth.

$MEMORY:size

size is expressed in kilobytes of Random Access Memory (RAM) required.

$OPSYS:operating system | ALL

operating system is one of the supported platform constants listed in subsection 5.3 for MACHINE_OS, or
ALL. If ALL is given, it indicates that the segment is operating system independent. Dependencies on a
particular version of the operating system are defined in the Requires descriptor where a dependency on
a specific segment (e.g., operating system with a particular version) is described.

$PARTITION:diskname:size[:reserve]

This keyword allows segments to reserve space on multiple disk partitions. The installation software will
not split a segment across disk partitions, but the segment may do so in a PostInstall script. Use of
multiple disk partitions is discouraged.

size and reserve have the same meanings as for $DISK. For UNIX platforms, diskname is either an explicit
partition name (e.g., /home2) or an environment variable name of the form DISK1, DISK2, ... DISK99.
The installation software will set the environment variables DISK1, DISK2, etc. to the absolute pathname
for where space has been allocated. These environment variables are defined for PreInstall and
PostInstall, but not for DEINSTALL. $PARTITION keywords are assumed to be in sequential order,
so that environment variable DISK1 will refer to the first keyword encountered, DISK2 to the second, etc.

For NT platforms, diskname must be a disk drive name. For example,

$PARTITION:”D:”:2048

requests 2MB of space on the “D” disk drive.

For example, suppose a Tactical Decision Aid (TDA) is compiled to run on an HP, a Solaris, and an NT
platform. Assume for the HP it requires 512 K of memory, requires 1 Megabyte (MB) of disk storage for
the program and its data files, and will expand over time to a maximum of 4 MB. For Solaris, assume it
requires 576 K of memory, 1.5 MB for initial disk space, and will expand to 5 MB. For a PC, assume the
requirements are the same as for the Solaris machine. The proper Hardware file is

Segment Descriptors and Descriptor Files

DII COE I&RTS: Rev 3.0 July 1997 189

#ifdef HP
$CPU:HP
$DISK:1024:3072
$MEMORY:512

#elif SOL
$CPU:SOL
$DISK:1536:3584
$MEMORY:500

#elif PC && NT
$CPU:PC486
$DISK:1536:3584
$OPSYS:NT
$MEMORY:571

#endif

Note that this example indicates that the information described is the same for all HP platforms, the same
for all Solaris platforms, but that it only applies to PC486 or better machines running Windows NT.

As another example, assume a data segment is to be allocated across three disk partitions. Further assume
that the first partition must be /home5 and requires 10 MB, but the remaining space required is 20 MB
each and can be on any available disk partition. The proper $PARTITION statements are:

$PARTITION:/home5:10240
$PARTITION:DISK2:20480
$PARTITION:DISK3:20480

Assume that the installation software is able to allocate space on /home5 as requested, and that the
remainder of the space requested is on /home18. The installation software will set the following
environment variables:

setenv DISK1 /home5
setenv DISK2 /home18
setenv DISK3 /home18

$TEMPSPACE:size

Some segments may need temporary space during the installation process. The $TEMPSPACE keyword
requests that size kilobytes of disk space be allocated for temporary use during the installation process. If
space is available, the installation software sets the environment variable COE_TMPSPACE to the absolute
path where space was allocated. If space is not available, an error message is displayed to the operator and
the segment installation fails. The installation software automatically deletes the allocated space when
segment installation is completed. Space is allocated prior to executing PreInstall.

5.5.2.15 Help

This segment descriptor is a place holder for a future COE revision. Its purpose is to provide a mechanism
for identifying and managing help files within the system. Segment developers should use this descriptor
now to reduce migration problems later.

As Figure 5-2 indicates, segment help files are located directly underneath the directory

SegDir/data/Help

They are listed individually in the Help segment descriptor and grouped according to their format. Help
file format is identified by one of the following keywords:

Segment Descriptors and Descriptor Files

DII COE I&RTS: Rev 3.0 July 1997190

$HTML a list of help files in HTML format.

$MAN a list of help files in UNIX man page format.

$MSHELP a list of help files in Microsoft Help format (NT only).

$TEXT a list of help files in plain ASCII text format (i.e., no graphics or special characters).

$OTHER a list of files in a format other than that identified by the preceding keywords.

The order in which these keywords is listed is not important and they may be repeated multiple times
within the segment descriptor. HTML is the COE-standard format, but the other formats are provided to
assist legacy system migration.

For example, assume a segment contains two HTML-format help files (H1 and H2), UNIX man pages
(man1 and man2), three ASCII text files (T1, T2, and T3), and one help file in an internal format (doc1).
Then the proper Help segment descriptor entries are:

[Help]
$HTML
H1
H2
$MAN
man1
man2
$TEXT
T1
T2
T3
$OTHER
doc1

5.5.2.16 Icons

The Icons descriptor is used to define the icons that are to be made available on the desktop to launch
segment functions. The format of the descriptor is a list of files underneath data/Icons that define icon
bitmaps and their associated executables. Refer to the Executive Manager API documentation for a
description of the file format.

5.5.2.17 Menus

Use the Menus descriptor to list the names of menu files contained within the segment. Figure 5-2 shows
that segment menu files are located underneath data/Menus. Refer to the Executive Manager API
documentation for the menu file format.

For account groups, this descriptor is simply a list of the account group’s menu files. For other segments,
the format of each line is

menu file[:affected menu file]

where menu file is the name of a menu file underneath the segment’s data/Menus subdirectory, and
affected menu file is the account group menu file to update. If multiple account groups are affected, as
listed in the SegName descriptor, each affected account group is updated. If no affected menu file is listed,

Segment Descriptors and Descriptor Files

DII COE I&RTS: Rev 3.0 July 1997 191

then menu file is simply added to the list of menu files which comprise the account group’s menu
templates.

For example, suppose a segment called ASWTDA has four menu files in the data/Menus subdirectory:
System, MoreStuff, ASWTDA, and Logging. Assume that System is to be added to the affected
account group’s System menu file, and MoreStuff is to be added to the affected account group’s
Default menu file. The proper entries are as follows:

System:System
MoreStuff:Default
ASWTDA
Logging

5.5.2.18 Network

The Network descriptor is used to describe network-related parameters. Use of this descriptor requires
prior approval by the DII COE Chief Engineer and its use is restricted to COE-component segments, except
for DCE Servers which are not necessarily COE-component segments. VerifySeg will strictly fail any
segment that includes this descriptor unless it is a COE-component segment or it is a DCE server.

One or more entries may follow each keyword listed below.

$HOSTS

IP addresses and hostnames are generally established by a system or network administrator. Segments may
add IP addresses and host names as follows:

$HOSTS
LOCAL | REMOTE :IP address:name{:alias}

where IP address, name, and alias are as defined for the UNIX /etc/hosts file. If the IP address
specified already exists in the network hosts file, the name and alias entries are added as alias names. If
LOCAL is specified, the entry is made only to the local network hosts file. If REMOTE is specified, the entry
is applied to the NIS/NIS+ or Domain Name Service (DNS) server. If REMOTE is specified but neither
NIS/NIS+ or DNS are installed, it will default to LOCAL.

Segments should rarely need to directly add host table entries. VerifySeg will issue a warning for any
segment which adds host table entries.

$KEY:Network:key

key is the authorization key given to the segment developer by the Chief Engineer. This entry is required
only once within the section, and it applies to all entries within the section.

$MOUNT (UNIX only)

The $MOUNT keyword is used to specify NFS mount points. The syntax is

hostname:NFS mount point:target dir

where hostname is the name of a platform on the network, NFS mount point is the file partition to mount,
and target dir is where to mount the requested partition on the local machine. If target dir does not exist on
the local machine, it will be created.

For example, the sequence

Segment Descriptors and Descriptor Files

DII COE I&RTS: Rev 3.0 July 1997192

$MOUNT
dbserver:/home3/USERS:/h/USERS

will perform the UNIX equivalent of

mount dbserver:/home3/USERS /h/USERS

If the hostname specified is the same as the local machine, a mount is not performed. Instead, the NFS
mount point is made available for other platforms to mount. If a mount is performed as a result of
processing this keyword, the system will automatically reboot the system after segment installation is
completed. It performs as if the $REBOOT keyword (see the Direct descriptor) were encountered; that is,
the operator is notified that a reboot is required and given an option to override the reboot directive.

$NETMASK:mask

This keyword allows a COE-component segment to set the subnet mask to mask. This should rarely be
required since the netmask is normally established as part of the COE kernel. If two COE-component
segments attempt to set the netmask, the last segment loaded succeeds.

$SERVERS

Most COE services are implemented as servers. This keyword allows a segment to list the non-DCE
servers, by symbolic name, that it contains. These servers are registered with the COE so that other
segments can obtain their location through the COEFindServer function (see Appendix C).

Note: Servers implemented through DCE functions should not use this
keyword. The DCEServerDef descriptor should be used
instead.

Each name listed is added to a table maintained by the COE of all servers in the system. This table is used
by the System Administration software to allow a site administrator to indicate which platform actually
contains the server. The name given is added as an alias to the network host table for the platform that
contains the server. If NIS/NIS+/DNS are being used, the alias is added to the NIS/NIS+/DNS-managed
host table. Otherwise, it is added to /etc/hosts.

For example, assume a COE-component segment contains two servers named masterTrk and
masterComms. Assume that this segment is loaded on two workstations: sys1 and garland. Some
servers are designed to recognize whether they are the master server or are a slave to a master server
located elsewhere. For this reason, the COE must handle situations where the same segment is loaded on a
server and a client machine. Assume in this example that the segment operates as a master server on sys1,
but as a slave on garland.

The following statements identify the servers contained within this segment:

$SERVERS
masterTrk
masterComms

When the segment is loaded, the installation software performs the following actions:

1. Add masterTrk and masterComms to the COE-maintained list of servers if they are not already
there.

2. Check to see if masterTrk or masterComms already exist in the network host table. If so,
processing is completed.

Segment Descriptors and Descriptor Files

DII COE I&RTS: Rev 3.0 July 1997 193

3. Otherwise, ask the operator if this is the server platform for masterTrk and masterComms.
4. If the operator answers “no” to the previous question, processing is complete.
5. If the answer is “yes,” update the network host table to contain masterTrk and masterComms as

aliases for the machine being loaded.

Note that this approach does not require the server (sys1) to be loaded prior to the client (garland).
Furthermore, the site administrator can later change the configuration because all necessary information is
available to the System Administrator software. Also note that the segment does not require the actual
hostnames or IP addresses.

Hostnames are site-specific and cannot be predicted in advance. Therefore, the COE requires that segments
use meaningful symbolic names as illustrated here instead of making assumptions about a specific
hostname or naming convention.

5.5.2.19 Permissions

The Security Administrator software provides the ability to describe objects (files, data fields, executables,
etc.) which are to be protected from general access. This information is used to create profiles which limit
an operator’s ability to read or modify files. Applications may query the security software to determine the
access permissions granted to the current user. The Permissions file is the mechanism by which
segments describe objects and what permissions to grant or deny for the objects.

This descriptor is a sequence of lines of the form:

object name:permission abbreviation:permission

object name is the item to be controlled, permission is the type of access to grant or deny (add, delete, read,
etc.), and permission abbreviation is a single character abbreviation for the permission.

Permission abbreviations specified for an account group must agree with all segments which become part
of the group. The following are reserved abbreviations and their meanings:

A - Add
D - Delete
E - Edit
P - Print
R - Read
V - View
X - Transmit

Segments may use additional abbreviations as required.

For example, suppose a segment generates reports that are to be protected. Permissions relevant to reports
are delete, print, read, and archive. The proper Permissions file is:

Reports:D:Delete:P:Print:R:Read:Z:Archive

(Z is used to indicate archive permission in this example.)

If the Permissions file is missing, the security software will report that no access permissions are to be
granted for the requested object.

Segment Descriptors and Descriptor Files

DII COE I&RTS: Rev 3.0 July 1997194

5.5.2.20 Processes

Use the Processes descriptor to identify non-DCE background processes (see subsection 5.10.6). The
format of the descriptor is a keyword which identifies the type of process, followed by a list of processes to
launch in the form

process {parameters}

where process is the name of the executable to launch, and parameters are optional process-dependent
parameters. Output from the process is piped to /dev/null. For example, suppose TestProc is a
background process which accepts two parameters, -t and -c. It will be launched in a manner equivalent
to

TestProc -t -c >& /dev/null &

Valid keywords to identify process type are:

$BOOT specify a list of processes to launch at boot time
$BACKGROUND specify a list of background processes
$PERIODIC specify a list of background processes to run at some specified interval
$PRIVILEGED specify a list of processes to run in privileged (i.e., “root”) mode

(available for UNIX only)
$RUN_ONCE specify a list of “one-shot” processes to run the next time the system is

started, but only the next time the system is started and never thereafter
$SESSION specify a list of login session processes
$SESSION_EXIT specify a list of processes to run prior to terminating a login session

The $PERIODIC keyword requires specification of the required interval, in hours. The format is

$PERIODIC:hours

where hours is a decimal value.

Executables are assumed to be in the segment’s bin subdirectory. The $PATH keyword can be used to
indicate a different location. The syntax for the $PATH keyword is

$PATH:pathname

where pathname may be either a relative or an absolute pathname. If the pathname is relative, it is relative
to the segment’s home directory.

Use of boot-time, background, periodic, privileged, and “one shot” processes requires authorization by the
Chief Engineer. Therefore, the $KEY keyword must be specified once, in the form

$KEY:Processes:key

The authorization key applies to all requests within the Processes segment descriptor.

The Processes descriptor is a powerful capability the COE provides for managing application processes.
Refer to documentation in the Developer’s Toolkit for more detailed information on this descriptor.

Note: DCE processes are not described with the Processes
descriptor. Use the applicable DCE keywords within
DCEServerDef and DCEClientDef instead.

Segment Descriptors and Descriptor Files

DII COE I&RTS: Rev 3.0 July 1997 195

5.5.2.21 Registry (NT only)

The Registry segment descriptor allows segments to add entries to the NT registry. It is followed by a
list of keys and filenames, underneath the segment’s data/Registry subdirectory, whose contents are
the key values to add to the registry. VerifySeg will generate an error if any of the files listed do not
exist.

The parameters for this keyword are

keyloc:registry description file

where keyloc is the root location in the registry to add key values found in the file registry description file.
At present, keyloc may have only the value

$HKEY_LOCAL_MACHINE\SOFTWARE\COE.

Future revisions may expand the keyloc parameter.

Consider the following example.

[Registry]
$HKEY_LOCAL_MACHINE\SOFTWARE\COE:MyEntries

This indicates that the segment contains a file named MyEntries located under the directory
SegDir/data/Registry (where SegDir is the segment’s assigned directory). The contents of the file
MyEntries will be added to the registry under the key

HKEY_LOCAL_MACHINE\SOFTWARE\COE\SegType\SegDir

where SegType is the segment’s type and SegDir is the segment’s assigned directory.

Following is the format of the registry description file:

$KEY:key-name
$STRING:Name:StringValue|$BINARY:Name:BinaryValue|$DWORD:Name:DwordValue

where key-name is the name of the subkey to create beneath

keyloc\SegType\SegDir

• key-names may include ‘\’s to indicate that subkeys are to be created.

• The $STRING, $BINARY, and $DWORD keywords signify a string, binary or double-word name/value
pair that is to be maintained beneath the given key. The given Name follows the keyword and then the
value follows.

• At least one $KEY must be specified in the registry description file. Multiple $KEY’s may be specified
in the registry description.

• All $STRING, $BINARY, and $DWORD settings must appear at the beginning of a line. These settings
are not required and if omitted the given key will be created without any name/value pairs. There may
be multiple $STRING, $BINARY, and $DWORD settings per $KEY and the order in which they are
listed is not important.

Segment Descriptors and Descriptor Files

DII COE I&RTS: Rev 3.0 July 1997196

The following example is for a software segment whose segment directory is SegA. Assume that key
values are in the file settings.dat located underneath the directory SegA/data/Registry. The
proper Registry descriptor entry is

[Registry]
$HKEY_LOCAL_MACHINE\SOFTWARE\COE:settings.dat

The following are example entries for settings.dat:

$KEY:Analyze
$STRING:ControlFile:\Program\Analyze\Control.dat
$DWORD:UsageCount:0
$KEY:Defragment
$STRING:ControlFile:\Program\Defragment\Control.dat
$DWORD:UsageCount:0
$KEY:Reporting
$STRING:ControlFile:\Program\Report\Control.dat
$STRING:Example1:Callsign is Foxtrot Tango 3
$STRING:Example2:Response is “Spring time 3!”
$DWORD:UsageCount:21
$BINARY:Encoding:17
Here are several keys with no name/value pairs that also
illustrates creating subkeys
$KEY:Reporting\Type1
$KEY:Reporting\Type2
$KEY:Reporting\Type3

The above example creates the following registry entries:

\HKEY_LOCAL_MACHINE\SOFTWARE\COE\Software\SegA\Analyze
\HKEY_LOCAL_MACHINE\SOFTWARE\COE\Software\SegA\Defragment
\HKEY_LOCAL_MACHINE\SOFTWARE\COE\Software\SegA\Reporting
\HKEY_LOCAL_MACHINE\SOFTWARE\COE\Software\SegA\Reporting\Type1
\HKEY_LOCAL_MACHINE\SOFTWARE\COE\Software\SegA\Reporting\Type2
\HKEY_LOCAL_MACHINE\SOFTWARE\COE\Software\SegA\Reporting\Type3

Note that the values given for both the $DWORD and $BINARY parameters are given in decimal format, but
will appear in hexadecimal format ($DWORD) and binary format ($BINARY) when viewed from the NT
registry editor window.

The registry capability must be used with great care.

• The installer tools will remove registry entries added with this segment descriptor when the segment is
deleted.

• Segment developers shall not create root keys.

5.5.2.22 ReqrdScripts (UNIX only)

Use the ReqrdScripts descriptor to define the files that establish the runtime environment (account
group segment types) or to define files to extend the runtime environment (all other segment types). For
account group segments, the syntax is one or more lines of the form:

script name:C | L

Segment Descriptors and Descriptor Files

DII COE I&RTS: Rev 3.0 July 1997 197

where C means to copy and L means to create a symbolic link. This flag is used when login accounts are
created to either copy environment files to the user’s login directory or to create a symbolic link. There can
be a maximum of 32 scripts. A script name is restricted to a maximum length of 32 characters.

For example, the ReqrdScripts file for the System Administrator account group is

.cshrc:C

.login:C

The descriptor format for segment types other than account group is slightly different:

script name:env ext name

where script name is the name of a script in the affected account group’s Scripts subdirectory and env
ext name is the name of an environment extension file in the present segment’s Scripts subdirectory.

For example, assume a segment loaded under /h/TstSeg with a segment prefix TST is to be added to the
System Administrator application and it requires extending the .cshrc file. The proper ReqrdScripts
entry is:

.cshrc:.cshrc.TST

The installation tools will insert the statements

if (-e /h/TstSeg/Scripts/.cshrc.TST) then
source /h/TstSeg/Scripts/.cshrc.TST

endif

into the file /h/AcctGrps/SysAdm/Scripts/.cshrc. When the segment TstSeg is deleted, the
installation tools will remove these statements.

Refer to documentation in the Developer’s Toolkit for more information.

5.5.2.23 Requires

Segment dependencies are stated through the Requires descriptor. The format is:

[$HOME_DIR:pathname]
[$LIB:library name[:library path]]
segment name:prefix:home dir:[version{:patch}]

Segments will not be loaded until all segments they depend upon are loaded. For this reason, the parent
segment for an aggregate must not list child segments in the Requires descriptor.

Note: The parent segment for a child does not need to be listed in the
child’s Requires descriptor. By virtue of naming the aggregate
parent in SegName, there is an implied dependency.

The optional $HOME_DIR keyword is used in situations where a segment must be loaded onto the disk in a
particular place. This technique should be avoided.

The optional $LIB keyword is used to identify a dependency on shared libraries. library name describes
the shared library or Dynamic Link Library (DLL) on which the segment is dependent. The shared file is

Segment Descriptors and Descriptor Files

DII COE I&RTS: Rev 3.0 July 1997198

normally located in the dependent segment’s bin directory; however, library path can be used to define a
different path for the shared file.

For example, assume the segment TEST must be installed in the directory /home3/tmp/TEST, it
requires version 3.0.2 of segment SegA with patches P1 and P4, and also requires SegB version 5.1.1. The
Requires descriptor is

$HOME_DIR:/home3/tmp/TEST
SegA Name:SEGA:/h/SegA:3.0.2:P1:P4
SegB Name:SEGB:/h/SegB:5.1.1

In some cases, it may be possible that a segment dependency can be fulfilled by one or more segments.
This is indicated by bracketing such segments with braces and using the keyword $OR between acceptable
alternatives.

As an example, suppose the segment TEST above has a dependency that can be satisfied by SegA or the
combination of SegB and SegC. The proper Requires descriptor is

$HOME_DIR:/home3/tmp/TEST
{

SegA Name:SEGA:/h/SegA
$OR

SegB Name:SEGB:/h/SegB
SegC Name:SEGC:/h/SegC

}

Multiple bracketed alternatives may appear in the same descriptor.

5.5.2.24 Security

The Security descriptor is of the following form

classification{:caveat}

where classification indicates the highest classification level for the segment (UNCLASS,
CONFIDENTIAL, SECRET, TOP SECRET). The optional list of caveats is used to document releasability
restrictions. If the segment contains items with multiple classification levels, the highest classification level
must be specified. If the segment has multiple releasability restrictions, the most restrictive ones should be
listed as caveats.

Note: This descriptor is required and its purpose is primarily for
documentation. Caveats are not used for any other purpose but
the classification is used by the installation tools to determine
whether or not a segment should be loaded onto a platform. The
segment’s classification level is compared against the platform’s
current classification level (as displayed in the security banner)
and is not loaded unless the platform level dominates the
segment classification level. This feature is not to be considered
a trusted capability but is merely provided as an aid to the
installer. The classification and caveat must not be confused with
data labeling or other security features provided by trusted
systems.

Segment Descriptors and Descriptor Files

DII COE I&RTS: Rev 3.0 July 1997 199

5.5.2.25 SharedFile

This segment descriptor handles installation of NT shared DLLs and UNIX shared libraries. It is followed
by a list of filenames that are the names of the shared libraries (UNIX) or DLLs. They must be located in
the segment’s bin subdirectory, which is the DII-compliant location for shared files. VerifySeg issues
an error message if a filename listed does not exist under the segment’s bin subdirectory. Shared files
must use the segment prefix naming convention to assure that the names are unique.

The SharedFile descriptor accepts two keywords: $FILENAME which is required and $PATH which is
optional. The format for each follows.

$FILENAME:filename

This keyword establishes the shared library or DLL filename (parameter filename).

$PATH:pathname

This is an optional keyword which provides the directory path pathname of the file when it is not located in
the segment’s bin directory.

Note: The path is very important in a UNIX environment as the shared
library must be placed in the same location as when the
executable binary was created; otherwise, the binary will not
execute.

At installation time, the segment installer copies the shared file to the directory /h/COE/Shared, deletes
the shared file from the segment’s bin subdirectory, and then creates a symbolic link from
/h/COE/Shared to the original location. This is done so that the search path for finding shared files does
not need to include any entry other than /h/COE/Shared. Segments which have a dependency upon the
shared file must identify the segment which provides the shared file in the Requires segment descriptor.

Installation requires special care to ensure that a segment which provides a shared library/DLL is not
removed when there are segments still installed that require it. For this reason, the installer maintains a
usage counter for the shared file. When the segment which “owns” it is installed, the count is set to 1. As
segments which depend upon it are installed or removed, the counter is incremented or decremented as
appropriate. The installation tools thus prevent the “owning” segment from being removed until the usage
count indicates there are no more dependent segments installed.

Shared libraries/DLLs require specific consideration within the COE.

• Segments must state dependencies on the segment providing the shared library/DLL, not the actual file
itself.

• One segment may not update a shared library/DLL “owned” by another segment. This would

otherwise contradict the fundament COE principle that objects (resources, files, etc.) may be modified
only by the segment which owns the object, or by the COE.

Segment Installation

DII COE I&RTS: Rev 3.0 July 1997200

5.6 Segment Installation

Segment installation requires some form of electronic media (tape, CDROM, disk, etc.) that contains the
segments, and that has a table of contents which lists the available segments. MakeInstall is the tool
which creates such electronic media. However, it is important to identify the operations (e.g., compression)
performed on segments and the sequence in which these operations are performed.

Installation requires reading the table of contents created by MakeInstall, selecting the segments or
Configuration Definitions to install, and then copying the segments to disk. Segments may actively
participate in the installation process through PostInstall, PreInstall, and DEINSTALL scripts.
This subsection details both the MakeInstall tool and the installation sequence. At the end of this
subsection, detailed information on database creation and deinstallation is presented.

5.6.1 MakeInstall Flowchart

Figure 5-14 shows the sequence of operations performed by the MakeInstall tool.

1. MakeInstall is given a list of segments that are to be processed. For each segment in the list:
a) If the segment is not already on disk, it is extracted from the repository and placed in a

temporary location.
b) A check is made to ensure that the segment is a valid segment.
c) If the segment is invalid, an error message is displayed. If the segment was checked out

of the repository and placed in a temporary location, the temporary segment is deleted.
MakeInstall then terminates.

2. If all segments are valid, a worklist is created. The worklist is sorted to ensure that segments

which have dependencies appear in the list after the segments they depend upon. This ensures that
at install time a tape will not have to be rewound because of segment dependencies. Note that
specification of an aggregate automatically includes each child. The order in which child segments
are placed onto the distribution media is not guaranteed but is normally the order in which they are
specified by the parent segment.

3. For all segments in the worklist:

a) Prepare the segment by executing the segment’s PreMakeInst descriptor if it exists.
PreMakeInst is prevented from modifying the segment’s SegDescrip. Otherwise,
PreMakeInst could invalidate the segment validation step above.

b) Unless the segment specifies otherwise, all segment subdirectories except SegDescrip
are compressed.

c) The compressed segment and its descriptor directory are written out to the specified
electronic media.

d) If the segment was extracted from the repository and placed in a temporary location, the
temporary segment is deleted.

Segment Installation

DII COE I&RTS: Rev 3.0 July 1997 201

FT

Order
Worklist

Abort

Start

For All
Segs Requested

Extract
Segment

Valid
Seg?

F

T

Stop
For All

Segs in Worklist

Prepare Seg

Compress Seg

Write out Seg

Delete
Seg?

Delete Seg

F

T

Stop

Abort

Delete Seg

Issue Error
Message

Delete
Seg?

Figure 5-14: MakeInstall Flowchart

Segment Installation

DII COE I&RTS: Rev 3.0 July 1997202

5.6.2 Installation Flowchart

Figure 5-15 is a detailed flowchart for the segment installation process. The sequence of PreInstall,
PostInstall, and DEINSTALL executions is the most significant aspect of the flowchart. Directives
contained in the Direct descriptor may affect the sequence (e.g., use of $REBOOT and $ROOT
keywords), but such details are omitted for clarity. The installation software automatically removes patches
when a segment is replaced and deletes any temporary space ($TEMPSPACE keyword) allocated for the
segment. These details are also omitted for clarity.

1. A load device is selected (tape, disk, etc.) and the table of contents created by MakeInstall is
read.

2. Segments found in the table of contents which do not match the target platform are removed from

consideration. Similarly, a check is made to ensure that an operator cannot inadvertently load a
segment for which he is not authorized. The environment variables MACHINE_CPU and
MACHINE_OS are set to indicate the hardware platform.

3. The media may have Configuration Definitions defined. If they are defined:

a) The operator may select a Configuration Definition to load.
b) If a custom installation is desired, the operator is presented with the table of contents in

which all segments in the selected Configuration Definition are highlighted. The operator
may add or delete segments from this list.

c) If Configuration Definitions are not defined, the operator is shown the table of contents
and must manually select the desired segments.

4. For all segments selected, a check is made to see if the segment is loadable. To be loadable, all

dependent segments must either be selected or already on disk. Conflicting segments must not be
selected, nor may they already have been loaded on disk.

5. For all segments selected:

a) The installation tools determine where to load the segment. The environment variable
INSTALL_DIR is set to the absolute pathname to where the segment will be loaded.
Segments can not assume that any environment variables other than MACHINE_CPU,
MACHINE_OS, SYSTEM_ROOT (for NT only), INSTALL_DIR, and those set to refer to
disk space (COE_TMPSPACE, DISK1, etc.) are defined.

b) If an old version of the segment already exists on disk, the old segment’s DEINSTALL
script is run.

c) The new segment’s PreInstall script is loaded and executed. Note that the new
segment is not yet on disk.

d) The old segment is deinstalled by the installation tools. Modifications made through the
descriptor files are reversed.

e) The old segment is deleted from disk.
f) The new segment is loaded from tape onto disk and decompressed if necessary.
g) The installation tools process commands from the new segment’s descriptor files.
h) The new segment’s PostInstall script is run. PostInstall may invoke runtime

tools described in Appendix C (e.g., to prompt the user).
i) A status message is displayed indicating whether or not the segment was successfully

installed.

6. If any of the segments installed requested a reboot, the operator is notified and asked for

confirmation. If the operator confirms, the system is rebooted.

Segment Installation

DII COE I&RTS: Rev 3.0 July 1997 203

5.6.3 Database Installation and Removal

Within the overall installation and removal flowchart presented in Figure 5-15, there are some special
considerations with regards to handling SHADE databases. Database installation is described first, then
database deinstallation.

5.6.3.1 Database Installation

This subsection describes the installation process flow and how the database segment components work
together to install a data store on the COE database server. PostInstall, automatically invoked by
COEInstaller, drives the actual installation and creation of the database and its storage by executing
the scripts residing under the install directory of a database segment. The flowchart in Figure 5-16 depicts
the process logic of a PostInstall file with regards to database segments.

The DBMS should be operating in its maintenance mode (e.g. Oracle’s command STARTUP DBA
EXCLUSIVE) when a database segment or database patch segment is installed. This prevents users from
accessing data objects during their creation and possibly corrupting either the segment or the database
instance.

Table 5-8 shows, in broad outline, the sequence of steps performed by a database server segment when it is
creating the database. It uses Oracle and Sybase as examples. The first three steps must be performed by a
database account with DBA privileges. The owner account (and there may be more than one) should be
restricted so it can only create objects in the data stores designated for its use. The remaining steps should
be performed by the owning account and should be done without DBA privileges. This ensures that data
objects are not inadvertently created in data stores belonging to other databases.

Segment Installation

DII COE I&RTS: Rev 3.0 July 1997204

N

Y

YN

Y N Error
Handler

Start

A

Reduce list by
H/W & Security

Config
Defs?

Start

Select Load Device

Read TOC & SegDescrips

Select Config Def

Customize?

Auto Select Manual Select

For All
Segs Selected

Loadable?

Stop

Reboot
if

Requested

For All
Segs Selected

Run old DEINSTALL

A

Run new PreInstall

Deinstall old Segment

Delete old Segment

Copy new Segment to disk

Decompress new Segment

Install new Segment

Run new PostInstall

Display Status Report

Figure 5-15: Installation Flowchart

Segment Installation

DII COE I&RTS: Rev 3.0 July 1997 205

N

Y

Is
Appropriate

DBMS
Instance

Running?

Start appropriate DBMS
instance in Maintenance Mode

Set up Installation
Environment

Start

Stop

COEPromptPasswd

Execute
Installation Script

COEStartDBServer

Figure 5-16: PostInstall Logic for DB Install

Segment Installation

DII COE I&RTS: Rev 3.0 July 1997206

Function User Oracle SQL Command Sybase SQL Command

1. Allocate Storage DBA create tablespace ... datafile ... create database…

2. Create Owner DBA create user ...

3. Create Role(s) DBA create role ... create group …

4. Create Database Owner create schema create table …

5. Load Data Owner insert into table insert into table

6. Create Constraints Owner alter table … add constraint create constraint …

7. Grant Access Owner grant ... on table ... to role grant ... on table ... to group

8. Disconnect Owner DBA revoke CONNECT from ...

Table 5-8: Application Database Creation

1. Allocate Storage. This step is performed by the DBA and creates the physical storage needed for the
database. Developers shall not assume any particular disk configuration when creating data files and
shall create all files in the segment’s DBS_files subdirectory. Developers may create multiple
storage areas (e.g., Oracle tablespaces or Sybase segments) to separate different groups of data objects.
Developers shall not modify the core database storage areas.

2. Create Database Owner. This step is performed by the DBA and creates the account or accounts that

will own the data objects. Their access will be limited to the storage areas created by the segment and
to public storage areas (e.g. Oracle tablespace TEMP or USERS). Owners shall not have access to
system storage areas (e.g. Oracle tablespace SYSTEM). No permanent objects shall be created in public
storage areas by database segments. No objects shall be created in system storage areas. Owners shall
not have database administrator privileges.

3. Create Database Roles. This step is performed by the DBA and creates the database roles necessary

to manage user access. Developers should match the role definitions to the access needed by
applications. Developers should not grant privileges that allow users to manipulate the data objects’
structure (e.g. Oracle’s Alter privilege). Users should not be allowed to create their own indexes
either.

4. Create Database. This step is performed by the Owner and creates tables, views, indexes, constraints,

sequences, and any other data objects that are part of the database. If the developer has defined
multiple owners, a separate script should be provided for each one. No objects will be created that will
be owned by the DBMS default accounts (Oracle’s SYS or SYSTEM, Sybase’s sa) or by any other
account intended to be a DBA. Creation of constraints and indexes may be deferred to speed the data
load.

5. Load Data. This step is performed by the Owner and fills the data objects previously created.

Although index and constraint creation were defined as occurring in the previous step, developers may
defer them until the data load is complete to improve performance.

6. Create Constraints. This step is performed by the Owner and creates any indexes, constraints,

triggers, or other objects that are part of the database but whose creation was deferred until after the
data load.

7. Assign Grants. This step is performed by the Owner and grants the appropriate access permissions on

data objects to the database roles previously defined. Grants shall not be made directly to users
accounts. Grants shall not be made to general purpose users (e.g. Oracle’s PUBLIC user). Only the

Segment Installation

DII COE I&RTS: Rev 3.0 July 1997 207

owner or the DBA are allowed to administer grants. Other users will not be given permissions to
further disseminate grants.

8. Disconnect Owner. The last step – revoking database connection privileges from the owner upon

completion of the load process – is performed by the DBA. It ensures that users cannot connect to the
database as the owner of the data and thereby prevents users from modifying schemas, indexes, or
grants. Developers shall also require the database administrators to change the password of the owner
account upon completion of the database creation.

The flowchart in Figure 5-17 depicts the processing logic of the install directory’s scripts which drive
the creation of the database objects. Each package install script executes the database definition scripts
that connect to the COE Database Server to create database objects and perform other data definition
functions.

The package install script executes database definition scripts that actually connect to the COE DBMS
Server to create the database objects and perform other data definition functions.

5.6.3.2 Database Segment Deinstall

Deinstallation has a different flavor with databases. First, databases are dynamic. As users make changes to
their databases, sites’ data sets will diverge from each other. It is unlikely that any two operational sites will
have exactly the same data at any point in time. Second, inter-database dependencies restrict the ability to
remove segments in a modular way.

However, developers need to provide the capability to remove the application’s server segment from the
Database Server. This means removing the database and all traces of its presence from within the DBMS
and removing all files from the Database Server. The following steps, at a minimum, must be
accomplished. Note that the remove storage step de-assigns the data files from the DBMS, it does not
actually remove them from disk. The last step, remove files, is executed from the operating system to delete
the data files. Table 5-9 illustrates the logic required, using Oracle as an example.

Segment Installation

DII COE I&RTS: Rev 3.0 July 1997208

Create Database

Load Data

Assign Grants

Report Error

Disconnect Owner

Check Existence
of DB Scripts

Create Data Storage

Create Database Roles

Create Database Owner

Missing
Script?

Executed by DBA

Executed by DBO

N

Y

Executed by DBA

Figure 5-17: Install Scripts Logic

Function User Oracle SQL Command

Remove roles DBA drop role ...

Remove objects owner drop schema ...

Remove storage DBA drop tablespace ...

Remove owner DBA drop user ...

Remove files DBA N/A (Use OS commands)

Table 5-9: Application Database Deinstall

Segment Installation

DII COE I&RTS: Rev 3.0 July 1997 209

Within the Oracle server, combining the removal of storage and of data objects by using the Oracle
command ‘drop tablespace x including contents’ is not recommended because it tends to overload the
DBMS’ rollback segments. Developers should use the ‘drop schema’ command followed by a ‘drop
tablespace’ command instead.

When DEINSTALL is being executed to support a segment upgrade or patch, the upgrade or patch must
support the deinstall/reinstall of data and supply the scripts to do so.

DEINSTALL scripts must be set up to fail nondestructively if other database segments are dependent on the
segment to be deinstalled. This can usually be accomplished using the COE Tool COELstDBDepends.

Partial Segmentation for COTS Products

DII COE I&RTS: Rev 3.0 July 1997210

5.7 Partial Segmentation for COTS Products

The segmentation process has several benefits, including the ability to state dependencies of one segment
on another, which significantly simplify the installation process. From a macro perspective, the
segmentation process is a matter of creating the appropriate segment descriptors to describe the segment
and then running the MakeInstall tool to package the segment along with its segment descriptors.
However, there are situations in which it is not convenient to physically repackage the application in order
to put it into segment format. This is particularly true with large COTS products which are distributed on
media such as CDROM or in a format provided by the vendor.

The DII COE provides a mechanism, called partial segmentation, which allows use of the COTS vendor’s
original distribution media and scheme while yet retaining the advantages of using segment descriptors to
specify dependencies, identify conflicts, etc. In concept, the approach is to load a “pseudo-segment” which
contains only the segment descriptors and use the vendor’s installation process for the software itself. This
allows the installation tools to verify that sufficient space exists, that dependencies are met, and that
conflicts are resolved prior to loading the application.

Partial segmentation for COTS products requires that several actions be performed to ensure that it works
properly.

1. A “pseudo-segment” must be created. This is done by creating a directory with the required
segment descriptors which will give the segment a name, prefix, version number, etc. This must be
registered as is any other segment. The version number for the “pseudo-segment” must include a
primary version number that is used to track changes in the pseudo-segment and a secondary
version number that is the COTS product’s version number as provided by the vendor.

2. A PreInstall descriptor must be created which checks to see if a correct version of the COTS

product is already installed. If it is not, the PreInstall must notify the user that the COTS
product must be installed before continuing and then the PreInstall descriptor must return a
failure status to the installer tool. This requires the operator to use the vendor supplied instructions
to install the product before continuing.

3. Developers who use the partial segmentation process must certify in the Version Description

Document delivered to the government that the installation will fail if the “wrong” version of the
COTS product is installed. That is, if the pseudo-segment has been produced for version 3.2.1 of a
COTS product but the user installs version 3.1.5 then this error must be detected by the
PreInstall descriptor and handled accordingly.

4. Developers who use the partial segmentation process must provide a copy of the COTS product

for testing and must make it clear how testers should process the copy to make it ready for
installation.

The tool COEScanCOTS described in Appendix C is a slight variation on the partial segmentation process.
It is specially designed for use in the NT environment where COTS products may have already been
installed on the platform prior to the installation of the COE. This tool creates segment descriptor
information for applications already installed and thus allows segments loaded subsequently to state
dependencies on COTS products already installed.

Note: Partial segmentation is supported but it is not normally the
recommended approach for COTS products. Complete
segmentation allows one to take full advantage of the benefits of
the segmentation concept and process. Use of the partial
segmentation approach requires prior approval by the cognizant
DOD system engineer.

Security Considerations

DII COE I&RTS: Rev 3.0 July 1997 211

5.8 Security Considerations

COE-based systems typically operate in a classified environment. Therefore, the COE and the segment
developer both must address security considerations. This section describes the security implications from a
runtime environment perspective. It does not address procedural issues such as proper labeling of electronic
media, requirements for maintaining paper trails showing originating authority, etc.

Certain restrictions described below are a result of how the operating system manages file versus directory
permissions. The most specific permission (i.e., on a file) does not consistently override the least specific
permission (i.e., on the file’s parent directory).

This section is evolving as security policies are developed for COE-based systems and as legacy systems
migrate to the COE. Further guidance will be issued as appropriate. Refer to the DII COE Chief Engineer
for specific security concerns or for guidance in segment development beyond the information contained
here.

5.8.1 Segment Packaging

Segments shall not mix classification levels within the same segment. It is permissible to create an
aggregate that contains segments that are at different classification levels, but the parent segment must
dominate the security level of any child segments.

Features that are not releasable to foreign nationals shall be clearly identified through documents submitted
to the cognizant DOD SSA when the segment is delivered. Software and data that contain non-releasable
features shall be constructed so that the features may be removed as separate segments.

All classified data shall be constructed as separate segments. Developers shall submit unclassified sample
data to the SSA in a separate segment for the SSA to use during the testing process.

5.8.2 Classification Identification

All segments shall identify the segment’s highest classification level in the Security descriptor. Developers
shall submit documentation to the SSA that clearly identifies what features are classified and at what
classification level.

5.8.3 Auditing

Segments that write audit information to the security audit log shall include the segment prefix in the
output. This is required so that audit information can be traced to a specific segment.

5.8.4 Discretionary Access Controls

Developers shall construct their segments so that individual menu items and icons can be profiled through
use of COE profiling software. The profiling software allows a site administrator to limit an individual
operator’s access to segment functions by menu item and by icon.

5.8.5 Command-Line Access

It is highly desirable for segments not to provide an xterm window or other access to a command-line.
Segment features should be designed and implemented in such a way that operators are not required to
interact with the application or operating system by entering commands in a command-line environment.
Operators should interact with applications and the operating environment through graphical user
interfaces.

Security Considerations

DII COE I&RTS: Rev 3.0 July 1997212

Situations requiring superuser (i.e., root) command-line access shall require the operator to log in as a
normal user then use the su command (for UNIX) to become a superuser. Superuser access by other means
is not permitted unless the DII COE Chief Engineer grants prior authorization. Permission will be granted
only for COE-component segments.

Segments that provide command-line access shall audit entry to and exit from the command-line access
mode. Entry to command-line access mode shall require execution of the system login process so that the
user is required to enter a password. For example, the UNIX command

xterm -exec login

will create an xterm window that requires the operator to provide a login account and password.

Segments which require command-line access shall use the $CMDLINE keyword (and the required $KEY
keyword) in the Direct segment descriptor to document that the segment provides command-line access. If
the segment provides superuser privileges, the $SUPERUSER keyword must also be stated in the Direct
segment descriptor.

5.8.6 Privileged Processes

Segments shall minimize use of privileged processes (e.g., processes owned by root or executed with an
effective root user id). In all cases, privileged processes shall terminate as soon as the task is completed.
Privileged processes require prior Chief Engineer approval.

(UNIX) The names of the privileged processes must be listed in the Processes segment descriptor with
the $PRIVILEGED keyword. The $KEY keyword must also be used to indicate that authorization has been
granted by the Chief Engineer.

(UNIX) Shell scripts that SUID or SGID to root are strictly forbidden.

5.8.7 Installation Considerations

Segments shall not require PostInstall, PreInstall, or DEINSTALL to run with root privileges
unless permission to do so is granted by the Chief Engineer.

Segments shall not alter the UNIX umask setting established by the COE.

5.8.8 File Permissions

Segments shall satisfy at least one of the following two requirements:

1. The segment contains only subdirectories directly underneath the segment’s home directory. All files
are at least one level down from the segment’s home directory.

2. The segment has no directories or files that have the equivalent of the UNIX 777 file permissions.

This requirement is an attempt to provide a reasonable balance between security requirements and
migration of legacy systems. The main issue is that files and directories should have read/write/execute
permissions set for authorized, and only authorized, users.

Segments shall not place any temporary files in the directory pointed to by TMPDIR unless deletion,
alteration, or examination of such files by another segment or user poses no security concerns.

Security Considerations

DII COE I&RTS: Rev 3.0 July 1997 213

5.8.9 Data Directories

Segments which contain data items with mixed permissions (e.g., some are read-only, some are write only,
some are read/write) shall be split into separate directories underneath the segment’s data subdirectory
(for reasons explained in section 5.8). File permissions on the separate directories shall be set to prevent
unauthorized access to data files. No file shall be “world writeable” (i.e., writeable by any user) unless
authorized by the Chief Engineer.

Database Considerations

DII COE I&RTS: Rev 3.0 July 1997214

5.9 Database Considerations

COE-based systems commonly make extensive use of databases. Database considerations are therefore of
paramount importance in properly architecting and building a system. This section provides more detailed
technical information on properly designing databases and database applications.

5.9.1 Database Segmentation Principles

A COE database server is a COTS DBMS product. It is used in common by multiple applications. It is a
services segment and part of the COE. However, different sites need varying combinations of applications
and databases. As a result, databases associated with applications cannot be included in the DBMS services
segment. Instead, these component databases are provided in a database segment established by the
developer. The applications themselves are in a software segment, also established by the developer, but
separate from the database segment. If the data fill for the database contains classified data or is particularly
large, that data fill must be in a separate data segment associated with the database segment.

5.9.1.1 Database Segments

The DBMS is provided as one or more COTS segments. These segments contain the DBMS executables,
the core database configuration, database administration utilities, DBMS network executables (both server
and client), and development tools provided by the DBMS vendor. Databases are provided as database
segments. These segments contain the executables and scripts to create a database and tools to load data
into the database.

The following functional groupings are used to provide database services. The configuration of COTS
segments that provide them may vary depending on the DBMS and the specific configuration chosen. The
COTS segments will usually be provided as a COTS DBMS server segment and a COTS DBMS client
segment, installed on the database server platform and on the client platforms, respectively. Specific
implementations of COTS DBMS segments are discussed in Appendix F.

1. DBMS Server. This functional group provides the DBMS executables, the DBMS’s network services
executables, and the core database. Its components are usually part of the DBMS server segment.

2. DBMS Tools. This functional group provides the executables for other DBMS applications (e.g.

Oracle*Forms development tools). Its components are usually part of the DBMS server segment.

3. DBMS DBA Tools. This functional group provides the executables for tools used by database

administrators (e.g. Oracle’s ServerManager). Its components are usually part of the DBMS server
segment, but may also be incorporated in the COTS DBMS client segment.

4. DBMS Client Services. This functional group provides the client network services for the DBMS and

runtime executables for other DBMS applications (e.g. Oracle*Forms 4.0 runform executable). Its
components are installed on the network’s application server and on individual platforms.

The following specific segments are prepared by developers to provide databases within a COE-based
system configuration.

1. Application Database Segment. This database segment contains a database belonging to a component
application. It is installed on the database server.

2. Application Client Segment. This software segment contains applications that access a database

created by an Application Database Segment. It is installed on the network’s application server or on
individual platforms.

Database Considerations

DII COE I&RTS: Rev 3.0 July 1997 215

3. Application Database Data Segment. This data segment contains the data fill of a component
database when that data fill must be separated from the Application Database Segment. It is installed
on the database server.

5.9.1.2 Database Segmentation Responsibilities

Three groups are involved in the implementation of database segments: DISA, the application developers,
and the sites’ database administrators. The developers and DISA work together to field databases and
associated services for the DBAs to maintain. DISA provides the DBMS as part of the COE. Developers
provide the component databases. Sites manage access and maintain the data. Users interact with the
databases through mission applications and may, depending on the application, be responsible for the
modification and maintenance of data in the databases.

5.9.1.2.1 DISA

DISA or the cognizant DOD Program Office provides the core database environment in which the
applications’ database segments will be integrated. The basic functionality provided with that core
environment gets the database server ready for developers to add their databases and for the sites’ database
administrators to add and administer users.

The initial database contains the data dictionary, system workspace and recovery storage, storage for the
database component of any vendor tools, and an initial allocation of user workspace and temporary storage.
The application servers and client platforms are set up with the DBMS client environment so that users
need only execute the environment shell script to be able to connect to the server. Finally, the initial
operating system and DBMS accounts are established on the database server for the sites’ database
administrators.

5.9.1.2.2 Developers

Developers are responsible for providing everything associated with their application’s database.
Developers must define the owner account(s) for their base data objects. They must define and create the
data objects within those owner accounts. Aside from the data proper, developers must determine and
define the access levels and privileges that must exist for their segment’s database. Database roles must be
used to implement the users’ access controls to ease the maintenance burden on the DBA.

• Developers may implement specific auditing within their applications and databases, but shall not
modify the system’s security audits.

• Developers shall provide scripts for the DBA’s use to add, modify and remove user privileges.

5.9.1.2.3 Database Administrators

The System and Database Administrators at each site are responsible for creating, modifying, and removing
users’ DBMS and UNIX accounts using COE Tools. For security and ease of management, a “unitary
login” or single account name for each user for both the operating system and the DBMS is being adopted
for COE-based system. This means that users cannot use DBMS accounts defined by developers and that
developers cannot assume the existence of any particular user accounts except for accounts created by the
developer to support DBMS services. It also means, as required by the system Security Policy, that
database actions can be traced to the individual user. Security auditing is the responsibility of the sites’
DBAs. They are implemented as each site needs using the audit features provided by the DBMS.

A DBA creates users’ DBMS accounts as part of the process of granting users access to applications and
their associated databases. COE Tools are used to accomplish this. In order for these tools and the grants
process to work properly and smoothly, the developers must provide procedures, scripts, and instructions

Database Considerations

DII COE I&RTS: Rev 3.0 July 1997216

for the DBA’s use. Users’ access will change over time and few users will have access to all applications.
The developers’ procedures must support the addition of users and the revocation of users’ privileges.
Since those privileges correspond to applications or sets of applications, separate procedure scripts must be
provided for each application or set. If an application has multiple levels of privileges, then multiple
procedures must be provided.

5.9.1.3 DBMS Tuning and Customization

The core database server segment(s) is (are) configured and tuned by the organization responsible for it
(e.g., DISA, GCCS, GCSS) based on the combined requirements48 of all developers’ databases (within the
program or DOD wide) taken together. Developers provide these requirements during Segment
Registration. This allows the DBMS Server segments to be reasonably independent of particular hardware
configurations and ignorant of specific application sets. It is not tuned or optimized beyond that.

The final tuning of the DBMS cannot be accomplished until a complete configuration is built and it has an
operational load. Developers should provide information into the tuning process, but should not make their
applications dependent on particular tuning parameters. Where a non-standard parameter is required for
operations, developers must provide that information to DISA so the DBMS services segment can be
modified accordingly.

The developers need to communicate any design assumptions and DBMS configuration requirements that
must be incorporated in the DBMS set-up. If, for example, developers need any settings in the Oracle
initDII.ora file that are not the default settings for the current data server segment used in the
currently available data server segment, that information needs to be provided to the DII COE Chief
Engineer or responsible Program Chief Engineer early in the integration process for a forthcoming release.
Based on the impact of the change, DISA or the responsible Program Office can decide to modify the
baseline server configuration or to develop a database server patch segment to accompany the application’s
database segment and modify the in-place database server segment.

Similarly, sizing of system recovery logs, log archiving directories, and users temporary workspace is
based on the combination of the requirements of the various applications that use DBMS services.
Developers must communicate their minimum requirements for these so that the core DBMS is not set to
be too small. Most of the application tools provided by DBMS vendors are incorporated in the DBMS
segment in the functional category of Server Tools. To ensure that needed tools are available, developers
should advise the Chief Engineer what COTS tools they intend to use when registering the segment. When
such tools are used, the developer must identify the dependency under the database application segment’s
Requires descriptor.

• Developers shall not modify the core DBMS instance’s configuration. Extensions or modifications of
that configuration require the specific approval of the DII COE Chief Engineer and will be
implemented by DISA in the COTS DBMS segment.

• If developers modify any of the executable tools (e.g. add User Exits to Oracle*Forms), then the
modified version of the tool does not reside with the core database services, but becomes a part of the
application’s client segment. This prevents conflicts among different modified versions of a core
function. The maintenance of that modified tool also becomes the responsibility of the developers.

5.9.2 Database Inter-Segment Dependencies

A key objective of the segmentation approach is to limit the interdependencies among segments. Ideally,
database segments should not create data objects in any other schema or own data objects that are
dependent on other schemas. However, one purpose in having a Database Server is to limit data

48 An implication of this statement is that the combined requirements may lead to the need to develop a
multiple instance database server segment.

Database Considerations

DII COE I&RTS: Rev 3.0 July 1997 217

redundancy and provide common shared data sets. This means that there will usually be some dependencies
among the databases in the federation. This section addresses the management of such dependencies.

The following principles apply when inter-database dependencies exist:

• The database schema within a segment that will own the parent object will create that
object.

• The database schema within a segment that will own the child (dependent) object will
create that object.

• Database schemas with inter-database dependencies will strive to keep those
dependencies in segments separate from the non-dependent portions of the schema.

• The referencing object, not the one that is referenced, owns referential dependencies
(e.g. foreign keys). If the only dependencies are referential, separate segments are not
needed.

• Schemas retain their autonomy. The developer of a dependency (including referential
dependencies) is responsible for maintaining that dependency should other developers
change their database schemas.

The following are general requirements for database segments.

• Application Database Segments shall not make modifications to another segment’s application
database. If a schema in an application database needs to create data objects in some schema belonging
to another application database segment, those objects will be placed in the application database
segment that owns those schema objects. Developers shall not create indexes on another application
database segment’s tables because of the performance problems they can cause.

• Developers will not modify the schema of another segment’s database. If changes to table or column

definitions are needed, they must be effected by the developer of the database.

• When dependencies exist they will be documented under the Requires descriptor of the SegInfo

file. Object dependencies will be document under the Database descriptor of the SegInfo file.

The following example illustrates (see Figure 5-18) how dependencies are to be created and managed. The
developers of database B need to attach a trigger to a table in database A. This trigger will feed data from A
to B every time that table is modified. Rather than include the trigger as part of B’s Database Segment, it is
put into a separate Database Segment C, that modifies Database Segment A. C, the inter-database segment,
is dependent on the prior installation of both database segments and is so labeled under its Requires
descriptor. The table is listed in the $MODIFIES section of the Database descriptor.

Database Considerations

DII COE I&RTS: Rev 3.0 July 1997218

Database Segment A
created by

Developer A

Database Segment C
created by

Developer B
(dependent on A and B)

Database Segment B
created by

Developer B

Segment dependencies are listed in the Requires descriptor
Object dependencies are listed in the Database descriptor

Figure 5-18: Inter-Database Dependencies

5.9.3 Loading Data into Database Segments

After the objects belonging to a Database Segment have been created in PostInstall, they may need to
be populated. Other objects, those containing dynamic data, may be initially empty. Where needed, a
database segment can perform initial data fill in the Load Data phase of the PostInstall. Several
methods are discussed below that can be used to accomplish data loads. Method selection should be based
on the amount of data to be loaded.

If a small number of records are to be loaded into a table, the load can be accomplished with insert
statements embedded in an SQL command script. The following excerpt is an example for loading data into
Oracle.

sqlplus -silent DBSORT/${DBO_PWD} <<eof
INSERT INTO SORTSM_BIDES (UIC, SECUR, TIME,SCLAS)

VALUES (‘N00001’,’U’,sysdate,’U’);
INSERT INTO SORTSM_BIDES (UIC, SECUR, TIME,SCLAS)

VALUES (‘N00002’,’U’,sysdate,’U’);
INSERT INTO SORTSM_BIDES (UIC, SECUR, TIME,SCLAS)

VALUES (‘N00003’,’U’,sysdate,’U’);
eof
;;

If a large amount of data is to be loaded into a database table, the use of a data loading utility furnished by
the RDBMS is usually more efficient. In this case, the utility can be invoked from the LOAD_DATA

Database Considerations

DII COE I&RTS: Rev 3.0 July 1997 219

section of the database definition script. Examples of these data loading utilities are Oracle SQL*Loader,
Informix dbload, Oracle or Informix Import, and Sybase bcp. These utilities require that the data to be
loaded be stored in a file with a specific format.

Files used for data fill belong in the data subdirectory of the database segment. The data directory within
the segment can also be used as a ‘mount point’ for CDROM, tape drive, or other bulk storage devices.
This is the preferred approach for large data loads. It allows the segment to be filled without occupying disk
space during the data fill.

The security classification of the data to be loaded must be considered during the implementation of a
database segment. When a classified data fill is part of the database segment, the entire segment becomes
classified at the same level as the data. Therefore, developers must separate the data fill from the database
segment when the database schema is not classified, but the contents are. The intent here is to keep
database segments unclassified as much as possible so schemas can be reused. The security classification of
a DII COE system (e.g. GCSS) is a separate issue and is addressed in the security policy of that system’s
program office.

If a separate data segment is provided to accompany a database segment, that data segment must have a
DEINSTALL capability. This frees storage after the data fill is complete.

It can take a long time to fill a large database. Developers should indicate the approximate load time in
their ReleaseNotes. The data load time can be reduced by loading the data before creating the database
constraints and indexes. Estimating the load time should only be done with clean data that has been tested
against the database constraints.

Tailoring the COE

DII COE I&RTS: Rev 3.0 July 1997220

5.10 Tailoring the COE

Most properly designed segments will not require any extensions to the COE, except for the need to add
icons and menu items. This subsection describes some of the more commonly required extensions, and
techniques for addressing less frequently encountered extensions.

5.10.1 Adding Menu Items to the Desktop

Adding menu items is usually required only when installing a software segment. Two pieces of information
are required: the name of the affected account group(s) and the menu items to add. Refer to the SegName
and Menus descriptors.

The installation software appends the contents of the segment’s menu files to the corresponding menu files
in the affected account group(s). This forms a master template in the affected account group’s
data/Menus subdirectory that is subsequently used to create operator profiles. Segments should use the
APPEND directive in the menu files to add items. Refer to the Executive Manager Programmer’s Guide in
the Developer’s Toolkit documentation for the format of menu files.

Previous COE releases included a system menu bar that was displayed at the top of the screen, just below a
security banner. The COE no longer automatically provides a system menu bar. Segments that require a
system menu bar must use the Executive Manager APIs to explicitly add menu items when the application
initializes. Developers may only add menu items that are contained within the current user’s profile. The
APIs are constructed to prevent addition of menu items to the system menu bar that are not contained in the
current user profile.

Segments that use a system menu bar must also use the APIs to remove their system menu bar additions
when the application terminates. Refer to the User Interface Specification for guidance on when it is
appropriate to use a system menu bar versus desktop icons.

5.10.2 Adding Icons to the Desktop

As with menus, adding icons is usually required only for software segments. Two pieces of information are
required: the name of the affected account group and the icons to add. Refer to the SegName and Icons
descriptors above.

The installation software appends the contents of the segment’s icon files to a master list located with
affected account group(s). This forms a master template in the affected account group’s data/Icons
subdirectory that is subsequently used to create operator profiles. Refer to the Executive Manager API
documentation for the format of icon files.

Refer to the User Interface Specification for guidance on when it is appropriate to use a system menu bar
versus desktop icons.

5.10.3 Modifying Window Behavior (UNIX)

The User Interface Specification defines required window behavior for all segments. X Windows controls
window behavior through a collection of resource definitions. The resource definitions consulted are as
follows (if they exist):

1. Files located in the directory /usr/lib/X11/app-defaults.
2. Files in the directory pointed to by XAPPLRESDIR.
3. Resources inherited from the display’s root window.
4. The file $HOME/.Xdefaults.

Tailoring the COE

DII COE I&RTS: Rev 3.0 July 1997 221

5. The file pointed to by XENVIRONMENT.

X Windows processes the controls in the order shown, and in such a way that the last control specified
overrides any preceding controls.

The COE must carefully control resources to avoid conflicts between segments. Therefore, segments shall
not place files in directories “owned” by X Windows (e.g., /usr/lib/X11/app-defaults.) Instead,
segments shall place their resources in the subdirectory data/app-defaults underneath the segment
directory as shown in Figure 5-2. At install time, the installation tools create a symbolic link underneath
$DATA_DIR/app-defaults to each of the files contained in the segment. For this reason, segments
must use their segment prefix to name all app-defaults used in this manner.

Figure 5-2 also shows that segments may place additional fonts underneath the segment’s data/fonts
subdirectory. At install time, the installation tools create a symbolic link underneath $DATA_DIR/fonts
to point to each of these files. Segments shall use their segment prefix to name font files used in this way.

The COE establishes the setting for environment variables XFONTSDIR, XAPPLRESDIR, and
XENVIRONMENT. Segments shall not modify their value. They are set as defined in subsection 5.3.

Motif follows a similar strategy for setting resources. The COE uses the Motif software provided with CDE
software. Refer to the Developer’s Toolkit documentation for more details on how Motif operates within
the CDE environment.

Segments may not place files in any directory “owned” by Motif (e.g., /usr/lib/X11/app-
defaults/Mwm) or CDE, nor may segments alter the account group’s .mwmrc resource file, if it exists.

To summarize, for DII compliance:

• Segments shall not modify vendor distributed X Windows, Motif, or CDE system resources
(Xdefaults, rgb.txt, etc.).

• Segments shall not place files in the X, Motif, or CDE distribution directories (e.g.,

/usr/lib/X11/app-defaults).

• Segments shall use the segment prefix to uniquely name files underneath the segment’s data/fonts

and data/app-defaults subdirectories.

• Segments shall not modify the COE established setting for XAPPLRESDIR, XENVIRONMENT, or

XFONTSDIR.

• Segments shall not modify the affected account group’s .mwmrc file, if one exists.

5.10.4 Using Environment Extension Files (UNIX)

The ReqrdScripts descriptor allows extensions to the affected account group’s “dot” files (.cshrc,
.login, etc.). This is most frequently done to add environment variables. However, unregulated use of
environment variables is detrimental to the system. The amount of space the operating system reserves for
environment variables is limited and loading a large number of segments could quickly exhaust this scare
resource. Each time a process is spawned, the child process inherits environment variables from the parent.
Resolving a large number of environment variables can take a significant amount of time and hence
degrade system performance.

DII compliance requires adherence to the following guidelines:

Tailoring the COE

DII COE I&RTS: Rev 3.0 July 1997222

• Do not include development environment variables in runtime environment scripts or extension files.

• Use “short names” for environment variables. UNIX stores environment variable names as character

strings in the environment space, so the longer the variable name, the faster environment variable
space is exhausted.

• Reuse environment variables already defined by the COE or affected account group.

• When feasible and efficient, use operating system services (such as pipes and streams) or data files to

communicate with other segments, or between components within the same segment.

• Do not use environment variables to communicate control data between components within the same

segment. Use operating system services or data files.

• Do not define environment variables that can be derived from other environment variables. For

example, to define MYSEG_BIN through

 setenv MYSEG_HOME /h/MySeg
 setenv MYSEG_BIN $MYSEG_HOME/bin

 wastes environment variable space. The COE guarantees a predictable directory structure, so

$MYSEG_HOME/bin can be used directly instead of $MYSEG_BIN.

• When feasible, have segment components create environment variables once they begin executing

through putenv or through “sourcing” a file containing needed environment variables. This approach
ensures that segment-specific environment variables are inherited locally by a single segment, not
globally by all segments.

5.10.5 Using Community Files

Community files are any files that reside outside a segment’s assigned directory. (Data files owned by the
segment underneath /h/data are considered an exception.) Most required community file modifications
are handled automatically by the installation software through descriptor directory files. The Community
descriptor is used when the installation software cannot provide the modifications required.

All community file modifications are carefully scrutinized at integration time because of the potential for
conflict with other segments or the runtime environment. Developers should seek guidance from the Chief
Engineer before modifying any COTS community files (those owned by UNIX, X Windows, Motif,
Oracle, Sybase, etc.).

5.10.6 Defining Background Processes

When an operator logs in, the operating system uses various files to establish a runtime environment
context. Segments use the Processes descriptor to add other background processes to the runtime
environment.

The COE differentiates between eight different types of processes:

Boot Processes launched each time the computer is booted or rebooted. Designate
boot processes with the $BOOT keyword.

DCE Boot DCE processes launched each time the computer is booted or rebooted.
Designate DCE boot processes with the $DCEBOOT keyword.

Tailoring the COE

DII COE I&RTS: Rev 3.0 July 1997 223

RunOnce Processes launched the next time the computer is rebooted. These are “one-shot”
processes and are only run the next time the computer is rebooted, but not for
reboots thereafter. Designate RunOnce processes with the $RUN_ONCE
keyword.

Periodic Processes launched at boot time that automatically run periodically at specified
intervals (e.g., 6 hrs, 24 hrs) with no other user actions required to initiate the
process. These processes are equivalent to UNIX cron process. Use the
$PERIODIC keyword to indicate these types of processes.

Privileged Processes that require “superuser” privileges to execute. Use the
$PRIVILEGED keyword to indicate these type of processes.

Background Processes launched the first time an operator logs in after a reboot; these
processes remain active in the background even after the operator logs out.
Designate background process with the $BACKGROUND keyword.

Session Processes launched when an operator logs in and remaining active only while
the operator is logged in. Designate session processes with the $SESSION
keyword.

Transient Processes launched in response to operator selections from an icon or menu.
Transient processes typically display a window on the screen, perform some
specific function in response to operator actions, and then terminate. In some
cases, the processes spawned may stay active for the length of the session, but in
all cases, the Executive Manager terminates transient processes when the
operator logs out. Designate transient processes through the Menus and Icons
descriptors.

Note: Because of the potential impact to other segments, system
performance, and system integrity, all processes except Session,
and Transient processes require prior approval by the Chief
Engineer. Boot, DCE Boot, privileged, and periodic processes
are strongly discouraged.

5.10.7 Reserving Disk Space

Segments frequently require additional disk space to accommodate growth over time as the system
operates. For example, communications logs are empty when the system is initially installed, but will
occupy space as messages are received and logged. Segments may reserve additional disk space through
the Hardware descriptor.

The installation software keeps track of how much disk space is actually in use and how much is reserved.
A segment will not be installed if the amount of space it occupies, plus any space it reserves, exceeds the
amount of unreserved disk space. The installation software allows the operator to select how full the disk
can be (80, 85, 90, or 95% of capacity). These safeguards are in place to avoid filling up the disk, but
segments are responsible for detecting when the amount of space requested is not available.

In rare situations, segments may require space on multiple disk partitions. See the $PARTITIONS
keyword for the Hardware descriptor.

Tailoring the COE

DII COE I&RTS: Rev 3.0 July 1997224

5.10.8 Using Temporary Disk Space

Segments may require temporary disk space during segment installation and during system operation. The
COE provides techniques for accommodating both uses for temporary space.

Temporary disk space may be requested during segment installation through the $TEMPSPACE keyword in
the Hardware descriptor. The installation software sets the COE_TMPSPACE environment variable to
point to the location where temporary space is allocated. This environment variable is defined only during
segment installation. The installation software automatically deletes all files in this temporary area when
segment installation is completed.

The environment variable TMPDIR points to a temporary directory that may be used during system
operation. However, there is a limited amount of disk space set aside for temporary storage so it must be
used sparingly. A better approach is for segments to store temporary data in their own data subdirectory.

Segments that use TMPDIR must delete temporary files when they are no longer required. For UNIX
systems, all files in this directory are automatically deleted when the system is rebooted. This is not true for
NT platforms. All segments, as a matter of good programming practices, should delete temporary files
when they are no longer needed.

5.10.9 Defining Sockets

Requests to modify the /etc/services file to add sockets is done through the COEServices
descriptor. This control point for requests to add socket names and ports helps avoid conflicts between
segments. Port numbers in the range 2000-2999 are reserved for COE segments. Segments should avoid
creating sockets with port numbers less than 1000 since these are generally reserved for operating system
usage.

PC-Based Applications

DII COE I&RTS: Rev 3.0 July 1997 225

5.11 Miscellaneous Topics

This subsection discusses a variety of miscellaneous topics that are related to segmentation, use of the DII
COE, etc.

5.11.1 Color Table Usage

The COE must carefully control how the color table is used to avoid objectionable “false color” patterns
that may appear when mouse focus changes from one window to another. The User Interface Specification
gives guidance on what colors to use from a human factors perspective, but it does not provide guidance on
how segments are to coordinate such usage through the COE.

This document will be expanded to include guidance for color table usage as the impact of COTS products
and legacy applications is evaluated.

5.11.2 Shared Libraries

The COE strongly encourages the use of shared libraries to reduce memory requirements. Developers may
create shared libraries (DLLs for NT platforms) through use of the SharedFile segment descriptor.

(UNIX) Developers should also link to X and Motif shared libraries to reduce memory requirements. The
Motif libraries provided by CDE should be used instead of the libraries provided by Motif or some other
source. This alleviates the need to maintain Motif shared libraries used both by the desktop (e.g., CDE) and
other applications.

5.11.3 Adding Network Host Table Entries

Platform IP addresses and hostnames are site-dependent. Hostnames in particular are most often selected by
the site and usually cannot be predicted in advance. Therefore, segments shall not include any assumptions
about a platform having a specific name or following any particular naming convention, nor make any
assumptions about a specific IP address class.

Segments should rarely need to add entries to the network host table. An operator usually establishes such
entries through system administration functions. For those situations where a segment must do so, the
$HOSTS keyword in the Network descriptor allows IP addresses, hostnames, and aliases to be added to
the network host table. The address may be added to either the local host table, or to the DNS/NIS/NIS+
maintained host table.

Prior permission must be given by the DII COE Chief Engineer to use the $HOSTS keyword, and
permission will be granted only for COE-component segments. VerifySeg will issue a warning for any
segment which uses the $HOSTS keyword, and a warning if the segment does not include the $KEY
keyword. A future release will issue an error if the segment does not provide a valid authorization key.

5.11.4 Registering Servers

Servers are registered with the COE through the $SERVERS keyword in the Network descriptor. Only
COE-component segments may register servers. Prior permission must be given by the DII COE Chief
Engineer to use the $SERVERS keyword. VerifySeg will issue a warning for any segment which uses
the $SERVERS keyword and strictly fail the segment if it is not a COE-component segment.

A segment that needs to determine the location of a server may use the COEFindServer function (see
Appendix C).

PC-Based Applications

DII COE I&RTS: Rev 3.0 July 1997 226

5.11.5 Adding and Deleting User Accounts

Segments are not normally allowed to create operator accounts (e.g., UNIX user login accounts). Segments
may create system accounts, through the COEServices descriptor, for the purpose of establishing file
ownership. Operator accounts are normally added to the system through use of the Security Administrator
application. They are customizable by security classification level, by access permissions granted or denied
against application objects, and by granting or denying access to menu or icon items. The segment
descriptors AcctGroup, Security, Permissions, Menus, and Icons provide these controls.

Figure 5-3 shows that operator accounts may be global or local. This attribute is specified when the
operator account is created. If the server that contains operator accounts is down, global operator logins
will be unavailable until the server is restored.

Profiles may also be global or local. This attribute is determined when the profile is created. If a global
profile is not available at login time (e.g., the server is down), login proceeds but the operator is notified of
the problem and the system is placed in a safe state.

Some segments require the ability to perform additional operations when a user account is created, or to
perform cleanup operations when a user account is deleted. This is done by using the $ACCTADD and
$ACCTDEL keywords in the Direct descriptor. Moreover, the $PROFADD, $PROFDEL, and
$PROFSWITCH can be used to perform segment-dependent operations when user profiles are created or
deleted, or when a user switches from one profile to another. Due to security implications, these keywords
require prior permission from the Chief Engineer and use of the $KEY keyword.

5.11.6 Character-Based Applications

Support for character-based interfaces is provided through the CharIF account group. An account is
established for individual users through the same process as all other accounts, but the account is identified
as a character-based interface account only. Operator profiles may be set up, but only those segments that
support a character-based interface (see the Direct descriptor) are accessible.

The remote user connects to the designated server through a remote login session. Once connected, the user
is prompted for a login account and password. A menu of options, such as

0) Exit
1) AdHoc Query
2) TPFDD Edit

Enter Option:

is presented to the user. The option selected is executed and results are displayed on the user’s remote,
character-based display.

5.11.7 License Management

The COE contains a license manager to administer COTS licenses. Vendors take a variety of approaches in
how they control and administer licenses. For this reason, the techniques for automating license
management are still under development and are being handled manually. Refer to the DII COE Chief
Engineer for further assistance in creating a segment that requires a license manager.

Developers should include the COTS vendor’s version number as the secondary version number as
described in Chapter 2. This will facilitate automated license management.

PC-Based Applications

DII COE I&RTS: Rev 3.0 July 1997 227

5.11.8 Remote versus Local Segment Execution

Segments which are remotely launchable are designated by the $REMOTE keyword in the Direct
descriptor. This feature is not currently implemented, but is reserved for future implementation. Developers
are encouraged to use the $REMOTE keyword and design their segments to account for local versus remote
execution. Thus, when this feature is fully implemented, developer segments will be positioned to take
advantage of the capability.

5.11.9 Modifying Network Configuration Files

Setting up a network requires modification of several network configuration files to set netmasks, identify
subnets and routers, etc. Proper network configuration is essential for proper system operation and
performance. For this reason, only COE-component segments may establish network configuration
parameters. This is accomplished through the Network descriptor.

Prior approval from the DII COE Chief Engineer is required. VerifySeg will issue a warning for any
segment that uses the Network descriptor and strictly fail the segment if it is not a COE-component
segment. Note that the $KEY keyword must also be specified to give a valid authorization key.

5.11.10 Establishing NFS Mount Points

NFS mount points are defined through the $MOUNT keyword in the Network descriptor. Establishing
mounted file systems can seriously degrade system performance. Poor design choices that result in several
different mount points can create single points of failure, or result in sequencing problems when the system
is loaded or rebooted. For these reasons the DII COE Chief Engineer must approve mount points for COE-
component segments. The cognizant Chief Engineer must approve mount points for mission application
segments.

VerifySeg will issue a warning for any segment which uses the $MOUNT keyword. It will strictly fail
any COE-component segment that does not specify the $KEY keyword.

6. PC-Based Applications

This chapter describes the DII COE features that are available for PC platforms. The present DII COE
supports PC Windows NT49 only. The COE concept is not specific to UNIX, or NT, or any other operating
system or windowing environment. However, certain adjustments to COE implementation details are
required to support differences between the PC-based NT environment (use of ‘\’ versus ‘/’ in naming
directories, byte swapping, etc.) and UNIX, as well as to take advantage of features offered in the NT
environment (e.g., registry).

The extensions described in this chapter to accommodate NT are not platform-dependent (e.g., limited to
80x86 PCs). Commercial industry has implemented the Microsoft NT operating system on selected other
platforms (e.g., DEC), but such platforms are not presently in wide use in the DII community. COE support
for NT on platforms other than PCs will be considered when they are in widespread use in the DII
community. Throughout this version of the I&RTS, NT and PC may be used interchangeably with the
understanding that NT is not limited to PC platforms.

49 Windows 3.1 and Windows for Workgroups 3.11 are not supported. Windows 95 is not presently a
supported platform because of known security problems within the operating system. When the security
problems are resolved, Windows 95 may be added to the list of supported platforms.

Disk Directory Structure

DII COE I&RTS: Rev 3.0 July 1997 228

6.1 Disk Directory Structure

The NT-based COE uses the same basic directory structure shown in related figures from Chapter 5.
However, Intel-based computers store data bytes in a different order than other processors. This makes data
sharing via disk more difficult. This section describes the COE disk directory extensions required to
support PCs.

Basic Directory Structure

The logical directory structure shown in Chapter 5 is preserved for PCs. On the primary disk drive,
subdirectory \h is created at the root level with subdirectories COTS, AcctGrps, COE, data, etc. Unless
overridden by the installer, the installation software will attempt to put segments on the primary disk drive
first. If it cannot do so, it will load the segment on the next available hard disk. The environment variable
INSTALL_DIR is set to point to where the segment was loaded at install time, just as for UNIX platforms,
and includes the disk drive designation in the pathname.

Segment Directory Structure

A Scripts subdirectory is optional for NT segments because environment extension files are not
supported, nor are they needed. Account group segments that need to establish global environment settings
shall do so by entering required settings in the registry. Segments that need to establish local environment
settings may do so through a .INI file that shall be located in the segment’s data\INI subdirectory. All
of a segment’s private INI files shall be stored in the segment’s data\INI subdirectory.

NT segments shall place all executables in the bin subdirectory. Segments that contain dynamic link
libraries (DLL files) shall place them in the bin subdirectory. Except for COTS segments, segments are
not allowed to load DLL files in any other subdirectory.

USERS Directory Structure

The NT COE uses the same operator directory structure as the UNIX COE, as described in Chapter 5.
Local operator accounts are specific to a single NT platform, while global operator accounts are accessible
from any NT PC on the network. However, operator accounts may not be mixed between UNIX and NT
platforms. Thus, an operator account, whether global or local, is either an NT operator account or a UNIX
operator account, but never both.

Global operator account subdirectories (e.g., \h\USERS\global) are physically located on an NT
designated as the server. This directory is made accessible to other PCs on the network through the share
command.

Environment variables USER_HOME, USER_DATA, and USER_PROFILE are set by the appropriate
account group and have the meaning described in Chapter 5. They are provided for backwards
compatibility and should not be used in the NT-based COE. As with UNIX applications, segments shall use
a Preferences API to locate user-related data. This is because data may ultimately be moved to the registry
or reside in different locations depending upon the NT configuration (e.g., workgroups versus domains). By
using the Preferences APIs, the developer can assure future compatibility.

Data Directory Structure

Chapter 5 defines data in terms of data scope. Local data is stored underneath \h\data\local while
global data is stored underneath \h\data\global. Because data stored on the PC is not directly
compatible with UNIX platforms, an additional data subdirectory is created for storing PC only global data.
This is the subdirectory \h\data\PCglobal. Segments shall follow the same rules for this directory as
for the \h\data\global directory, except that only PC segments are allowed to access it. This

Disk Directory Structure

DII COE I&RTS: Rev 3.0 July 1997 229

subdirectory is physically located on a PC designated as the server and made accessible to other PC
platforms on the network.

Like global data, PCglobal data is shared between platforms. However, PCglobal data (and local data
on PC platforms) is stored in native PC-byte order and can only be shared among PCs. PCs may also access
data stored in the \h\data\global subdirectory. However, this directory is always physically located
on a UNIX machine designated as a server. PC segments shall read and write data in the
\h\data\global directory in network byte order. PC segments shall read and write data in the
\h\data\local and \h\data\PCglobal directories in native PC byte order.

Miscellaneous

1. Segments shall use file extensions that correspond to conventional Windows usage. That is, use .EXE
for executables, .DLL for dynamic link libraries, .TXT for ASCII text files, etc. Note this means that
NT segment descriptor files should use the .TXT extension,50 but shall use the .BAT or .CMD (for
batch51 files), or .EXE (for compiled programs) extension for PostInstall, DEINSTALL,
PreInstall, and PreMakeInst.

2. Segments, excepting COTS segments and in some cases shared DLLs, shall not set the Windows

path environment variable. If the segment provides shared DLLs for use by other software, and if
there is no alternative way for that software to locate the DLLs, the segment may add a directory to the
path for those DLLs.

3. Segments shall use the standard Windows APIs to locate a directory for temporary disk storage. This

corresponds to using /tmp in UNIX. Segments shall delete temporary files when an application
terminates. Unlike the UNIX-based COE, the NT-based COE does not automatically delete files in the
Windows temporary directory when the computer is rebooted. This is in keeping with current
commercial usage of the Windows temporary directory.

4. Segments shall not add a global “home” environment variable to the affected account group.

5. Environment extension files are neither supported nor required in the NT-based COE.

6. app-defaults subdirectories are not meaningful in the NT-based COE. Special handling of fonts

(i.e., a fonts subdirectory) is not currently supported in the NT-based COE, but may be in the future.
NT segments should not include either of these subdirectories. If they are included with a segment, the
installation tools will not do any special processing for these subdirectories as they do for the UNIX-
based COE.

50 For backwards compatibility, NT segments may omit the .TXT extension. However, this is strongly
discouraged. The segment must be consistent in either always using the .TXT extension or never using it.
VerifySeg will strictly fail a segment that does not follow this convention. Otherwise it will be
confusing and unclear which descriptor takes precedence when a segment includes the same segment
descriptor, once with the .TXT extension and once without it.
51 Developers should avoid the use of batch files and use executables whenever possible. Batch files, in PC
NT, will cause a command shell window to pop up while the batch file is running.

Account Groups

DII COE I&RTS: Rev 3.0 July 1997 230

6.2 Account Groups

Account groups in the NT-based COE correspond to Windows Program Groups. The present NT COE does
not include the CharIF or DBAdm account groups.

When the COE is loaded, the installation tools create program groups SecAdm and SysAdm. The program
items in each program group are determined as segments are loaded. Some program items, specifically for
SecAdm and SysAdm, are provided by native Windows software and therefore will also be found in other
program groups provided by Windows. This is done by creating duplicate icons that point to the same
executable, not by creating multiple copies of the software.

As with the UNIX COE, the specific icons and program groups available to an operator depend upon the
operator profile.

Registry Usage

DII COE I&RTS: Rev 3.0 July 1997 231

6.3 Registry Usage

Microsoft Windows programs have traditionally created “INI” files to store configuration information.
Windows 95 and Windows NT use a registry52 instead to store hardware parameters, configuration data,
and Windows-maintained operator preferences. The registry is structured as a hierarchical database of keys
organized into a tree structure.

NT segments should not overuse the Windows registry in place of INI files. In particular, operator
preferences that are very segment specific should not be stored in the registry since this may needlessly fill
up the registry, and it will be difficult to manage as user accounts are created and removed. Moreover, the
registry is not portable between NT and UNIX. It is recommended that operator preferences be stored
underneath \h\USERS to minimize porting problems between UNIX and NT applications. (Use the
appropriate COE APIs to determine the correct data directory for the current operator.) Segments may use
private INI files but, if they are used, they shall be located in the segment’s data\INI subdirectory.

Except for COTS segments, segments shall not create root keys, but may create subkeys underneath the
root keys as desired. In all cases, segments shall create segment subkeys underneath

HKEY_LOCAL_MACHINE\SOFTWARE\COE

using the convention SegType\SegDirName where SegType is one of the following:

Account Groups for account group segments
COE for COE-component segments
COTS for COTS products
Data for data segments
Patches for patch segments
Software for all other segment types.

SegDirName is the segment’s directory name. Segments shall use the segment prefix to name all registry
subkey entries.

For example, assume a software segment whose directory is SegA has a segment prefix SEGA. Assume the
segment needs to store two pieces of information underneath HKEY_LOCAL_MACHINE\SOFTWARE:

1. the last coordinate system used (Universal Transverse Mercator [UTM], Lat/Long, etc.) and
2. the last time a certain parameter was computed.

Then the required registry path is

HKEY_LOCAL_MACHINE\SOFTWARE\COE\Software\SegA

and two appropriately named subkeys underneath this entry for storing value entries are
SEGA_Last_Coord and SEGA_Last_Time.

Note: The key HKEY_LOCAL_MACHINE\SOFTWARE\COE is created
when the DII COE is installed.

Microsoft encourages use of the registry in some ways that are strictly forbidden in the COE because the
COEInstaller tool performs some of these actions automatically. Segments, excepting COTS segments,
shall not use the registry to duplicate any actions performed by the COE installation software:

52 Developers should avoid overuse of the NT registry. It is best used for system-level constructs and not as
a total replacement for .INI files.

Registry Usage

DII COE I&RTS: Rev 3.0 July 1997 232

• Segments shall not register “uninstall” information in the Uninstall key beneath
CurrentVersion, with two exceptions: (1) when the segment is a COTS product that does register
“uninstall” information as part of its setup, or (2) as authorized by the DII COE Chief Engineer. If the
segment does register “uninstall” information, it shall specify the $USES_UNINSTALL keyword in
the Direct descriptor.

• Segments shall use the Processes descriptor to specify background processes. Segments shall not

add values to either the Run or RunOnce keys beneath the CurrentVersion key. The segment
shall use the $RUN_ONCE keyword to specify the requirement to run certain executables the next time,
and only the next time, the system is restarted. Use of this keyword requires approval by the cognizant
DOD Chief Engineer.

Reserved Prefixes, Symbols, and Files

DII COE I&RTS: Rev 3.0 July 1997 233

6.4 Reserved Prefixes, Symbols, and Files

The segment prefixes listed as reserved in Chapter 5 are also reserved in the NT-based COE. The following
segment prefixes are reserved and are specific to the NT-based COE:

NT Generic NT segments
WIN Generic Windows segments
WIN95 Windows 95 segments
WINNT Windows NT segment for 80x86 platforms

The environment variables listed as reserved in Chapter 5 are also reserved in the NT-based COE.
Segments shall not create environment variables with the same name as any reserved environment variable.
The following have no meaning in the NT-based COE, and are not guaranteed to be set:

DISPLAY
LD_LIBRARY_PATH
SHELL
TERM
TZ
XAPPLRESDIR
XENVIRONMENT
XFONTSDIR

All remaining environment variables listed in Chapter 5 are also defined for the NT-based COE.

The root-level AUTOEXEC.BAT, CONFIG.SYS, AUTOEXEC.NT, and CONFIG.NT files are reserved
files and shall not be modified by any segment, excepting COTS segments. Moreover, all windows INI
files (specifically, WIN.INI and SYSTEM.INI) are reserved files and shall not be modified by any
segment, excepting COTS segments. Segments should create and modify their own local INI files.

Programming Standards

DII COE I&RTS: Rev 3.0 July 1997 234

6.5 Programming Standards

Programming in the Windows environment is considerably different from the UNIX/X Windows
environment. This subsection details programming practices that are required to minimize problems in
mixing the two environments.

6.5.1 File System

Windows NT supports five file systems: FAT, VFAT, HPFS, NTFS, and CDFS. FAT (File Allocation
Table) is the file system used by MS-DOS, but it is extended in both Windows 95 and Windows NT
(version 3.5 and later) to support long filenames (e.g., VFAT). HPFS (High Performance File System)

originated with OS/2®. NTFS (NT File System) originated with Windows NT as an improvement over
both HPFS and FAT. CDFS (CDROM File System) is specific to CDROM devices.

NTFS is the file system required for the DII COE because its security architecture corrects known problems
in FAT. DII-compliant systems shall be formatted to use NTFS. However, the FAT and VFAT file systems
are the only available file systems for floppy disks. Therefore, the COE requires NTFS for hard disk drives,
but supports FAT and VFAT for floppy drives. The type of file system in use should be transparent to most
segments. When there is a choice, NTFS shall be used for hard and VFAT shall be used for floppy drives.

A further complication is that NTFS filenames use the 16-bit Unicode® character set instead of 8-bit
ASCII. Unicode is a technique for representing foreign alphabets (Japanese kanji, Chinese bopomofo,
Greek, etc.). NT segments are not required to create Unicode strings, but segments must be able to read
filenames that may be Unicode strings. This requirement is necessary because commercial products may be
distributed on media that use Unicode filenames and because Windows NT uses Unicode strings internally.

Pathnames in Windows usually include a disk drive designation (e.g., C:). The disk drive containing the
desired file may be located remotely on another machine. Windows allows symbolic names, called the
Universal Naming Convention (UNC), to be given to remote paths so that an application need not know the
platform, disk drive, or exact path to reach a particular file. UNC pathnames start with two backslashes
(\\) followed by the server name, followed by the desired pathname and filename. Segments shall support
the use of UNC pathnames.

To summarize,

1. Segments shall support the use of long filenames. Filenames are not allowed to contain embedded
spaces and should use file extensions as appropriate to conform to standard Windows usage.

2. Segments shall support use of UNC filenames.

3. Segments shall be capable of correctly interpreting Unicode strings, those representing filenames.

6.5.2 Dynamic Link Libraries

NT segments shall use DLLs to the maximum extent feasible. DLLs are located in the segment’s bin
subdirectory, except for COE segments. COE DLLs are located underneath the directory \h\COE\bin
for all COE segments.

Windows originally exported DLL functions by assigning ordinal numbers to each exported function.
Modules linked to DLL functions by ordinal number. However, later versions allowed linking to be by
symbolic name rather than ordinal numbers. All NT segments shall link by symbolic name and shall export
DLL functions by symbolic name rather than ordinal numbers. The reason for this requirement is that
ordinal numbers for exported functions could change with time, whereas symbolic names will not.

Programming Standards

DII COE I&RTS: Rev 3.0 July 1997 235

6.5.3 Graphics

PC segments shall support Video Graphics Adapter (VGA) and Super Video Graphics Adapter (SVGA)
resolutions, and should use the Win32 API Graphics Display Interface (GDI) for creation of 2D graphics.
This interface handles all calls made by applications for graphic operations and thus provides a standard
interface for such calls. As a result, the Win32 GDI allows segments to be developed which are
independent of the type of graphics output device in the end user’s system. That is, segments need only
make calls to standard graphic services provided by the Win32 subsystem regardless of the display, printer,
or multi-media hardware used in the system.

To improve 2D graphics performance, the WinG library may be used. WinG is an optimized library
designed to enable high-performance graphics techniques under Win32, Windows NT, Windows 95, and
future Windows releases. Segments should use OpenGL APIs for 3D graphics. OpenGL is a software
interface that allows the creation of high-quality 3D color images complete with shading, lighting, and
other effects. OpenGL is an open standard designed to run on a variety of computers and a variety of
operating systems. It consists of a library of API functions for performing 3D drawing and rendering.

6.5.4 Fonts

Windows supports three different kinds of font technologies to display and print text: raster, vector, and

TrueType®. The differences between these fonts reflect the way that the glyph for each character or symbol
is stored in the respective font resource file. In raster fonts, a glyph is a bitmap that Windows uses to draw a
single character or symbol in the font. In vector fonts, a glyph is a collection of line endpoints that define
the line segments Windows uses to draw a character or symbol in the font. In TrueType fonts, a glyph is a
collection of line and curve commands as well as a collection of hints. Windows uses the line and curve
commands to define the outline of the bitmap for a character or symbol in the TrueType font. Windows
uses the hints to adjust the length of the lines and shapes of the curves used to draw the character or
symbol. These hints and the respective adjustments are based on the amount of scaling used to reduce or
increase the size of the bitmap.

Vector and TrueType fonts are device independent, while raster fonts are not. TrueType fonts provide both
relatively fast drawing speed and true device independence. By using the hints associated with a glyph,
application software can scale the characters from a TrueType font up or down and still maintain their
original shape. Segments shall use TrueType fonts to take advantage of the increased performance,
flexibility, and What-You-See-Is-What-You-Get (WYSIWYG) screen-to-printer characteristics.
Customized application-specific fonts shall be avoided in favor of using industry standard fonts wherever
possible.

6.5.5 Printing

NT segments shall use the built in printing facilities provided by Windows. This includes using the
Windows supplied printer common dialog box for configuring a printer, selecting print quality, selecting
the number of copies, etc. All access to the printer shall be through Windows APIs.

Developers should be aware that some Win32 APIs are available only in Windows NT. Developers may
use these APIs, but should ensure that the segment still operates correctly in a Windows NT environment.
As appropriate, NT segments should support drag-and-drop printing.

6.5.6 Network Considerations

UNC Filenames

NT segments shall support UNC filenames to access network shared drives and directories. If necessary, a
segment can use the WinNet APIs to determine if a pathname is a network pathname.

Programming Standards

DII COE I&RTS: Rev 3.0 July 1997 236

The COE contains three pre-defined shared directories: \h\data\PCglobal, \h\data\global, and
\h\USERS\global. The proper UNC filename to use for these three directories is determined by
accessing registry subkeys underneath HKEY_LOCAL_MACHINE\HARDWARE as follows:

COE\Shared\data_PCglobal \h\data\PCglobal
COE\Shared\data_global \h\data\global
COE\Shared\USERS_global \h\USERS\global

NT segments that create network sharable services or devices shall store UNC information in the registry.
The subkey shall be either COE\Shared or SEGS\Shared depending upon segment type. The subkey
shall be located underneath HKEY_LOCAL_MACHINE\HARDWARE for hardware devices (e.g., disk
drives) or HKEY_LOCAL_MACHINE\SOFTWARE for software (e.g., servers). The segment shall document
the proper registry information in the API documentation for the segment.

Network Byte Ordering

Computer architectures sometimes differ in the convention they use for how bytes are ordered in a word.
This is the so-called “big-endian, little-endian” problem. Computers in which the most significant byte in a
word is the leftmost byte use big-endian byte ordering. Computers in which the least significant byte in a
word is the leftmost byte use little-endian byte ordering. Intel architectures use little endian byte ordering.
When data is sent across the network, it is important to agree upon the same convention for byte ordering.
The big-endian convention is also known as the network byte order and has been established as the industry
standard.

The COE adopts the industry standard for byte ordering53 and requires the use of network byte order for
any data transmitted across a heterogeneous LAN. Segments shall ensure that all network data is
transmitted in network byte order, except for certain data accessed on a PC-only network shared disk drive
such as the PCglobal data directory. Segments shall use APIs in the WinSock interface to ensure that
data sent across the network is in network byte order. Segments shall store disk data accessible only by PCs
in native PC byte order, but shall store disk data accessible by non-PCs in network byte order. The shared
data directories and byte ordering are as follows:

\h\data\PCglobal PC native byte order. Data here is shared, but is restricted to
only PCs.

\h\data\global Network byte order. Data in this directory may be accessible
from a UNIX platform as well as PCs.

\h\USERS\PC PC native byte order. Data located here is specific to operator
login accounts. Since a login account is either for UNIX or a
PC but never both, this data is platform-specific.

Network Communications

Windows NT supports four transport layer protocols:

NetBEUI provides compatibility with existing LAN Manager, LAN
Server, and MS-Net installations.

TCP/IP provides compatibility with standard UNIX environments and
a routable protocol for wide area networks.

53 DCE developers should use DCE functions to implement network byte ordering. All other developers
should use XDR protocol.

Programming Standards

DII COE I&RTS: Rev 3.0 July 1997 237

Data Link Control (DLC) provides an interface for access to mainframes and printers
attached to networks.

AppleTalk® provides interoperability with Macintosh networks.

TCP/IP is the COE standard network protocol. Segments shall perform network communications through
WinSock APIs. Communications shall be designed to operate asynchronously to ensure that the server or
application does not “hang” while waiting for a response.

6.5.7 Miscellaneous

The following statements apply to all new segment development. COTS segments may not meet all
mandatory requirements, but shall be documented where they do not fulfill a mandatory requirement. To
the extent possible, segments should conform to the requirements stipulated by Microsoft for allowing an
application to use the Windows Logo. The I&RTS fully supports the Microsoft Logo branding approach as
a subset of the requirements for full DII COE compliance.

Mandatory

1. All hardware shall be NT-compliant, as defined by the document Microsoft Windows NT Hardware
Compatibility List #4094.

2. Segments shall support VGA and SVGA graphics.

3. Segments shall be “close aware.” This means that the segment must enable the Close command and

periodically check the close flag through the Query Close function.

4. Segments shall use common control and common dialog functions contained in COMCTL32.DLL and

COMDLG32.DLL.

5. As appropriate, segments shall support cut and paste operations through the clipboard.

6. As appropriate, segments shall support drag and drop operations.

7. Segments shall support 16x16, 32x32, and 64x64 icons.

8. Segments shall not use MS-DOS APIs inside a compiled program. These functions are typically

interrupt-driven or depended upon specific memory addresses and are not portable. Win32 APIs only
are to be used within a compiled program. Segments may use MS-DOS commands within the various
installation-related batch files.

9. Segments shall use only Win32 APIs. Win16 APIs are not supported and shall not be used unless they

are part of a COTS product for which there is no 32-bit alternative.

10. Segments shall not duplicate functionality already provided by Windows.

11. Segments shall support long filenames and UNC.

12. Segments shall support the use of Unicode strings.

Optional

1. Segment developers should run the Windows SDK tool PORTTOOL.EXE to identify potential
problems with how Windows APIs are being used.

Programming Standards

DII COE I&RTS: Rev 3.0 July 1997 238

2. Segments should operate under both Windows NT and Windows 95. The segment should degrade

gracefully if it uses APIs found only in Windows 95 while running in a Windows NT environment, and
vice versa.

3. Segments should define the STRICT constant when compiling Windows code. This enables strict type

checking during compilation.

4. Segments should avoid using environment variables. The registry or local INI files are preferred

alternatives.

5. Developers are encouraged to use message crackers contained in WINDOWSX.H. Message crackers are

a set of macros that make code more readable, simplify porting, and reduce the need to do type casting.

6. As appropriate, segments should register icons for document types and provide a viewer to allow the

shell to display them. This is done through the HKEY_CLASSES_ROOT registry. Refer to Microsoft
documentation for the required procedures. A future COE release may provide segment descriptors to
accomplish this.

Segment Installation

DII COE I&RTS: Rev 3.0 July 1997 239

6.6 Segment Installation

Segment installation follows the same sequence as for the UNIX environment, and is defined in Chapter 5.
The key

HKEY_LOCAL_MACHINE\SOFTWARE\COE

is automatically created when the DII COE kernel is loaded. As segments are installed on the NT platform,
COEInstaller creates registry entries under this key corresponding to segment type as explained in
subsection 6.3. That is, assuming SegDir is the segment’s directory name and SegType is the segment’s
type, the installer creates the following registry key entry:

HKEY_LOCAL_MACHINE\SOFTWARE\COE\SegType\SegDir

All entries underneath this registry key are deleted automatically when the segment is deleted.

COEInstaller sets the environment variables INSTALL_DIR, MACHINE_CPU, and MACHINE_OS for
use in the PreInstall.BAT (or .EXE) and PostInstall.BAT (or .EXE) descriptors.
SYSTEM_ROOT is set to indicate where Windows was installed. The installer also stores the location where
the segment was loaded in the subkey SegDir\SegPath. The value of this subkey includes the disk
drive where the segment was loaded, but it cannot be accessed until after segment loading is completed.

It is strongly recommended that segments use the segment descriptors provided to “self-describe” the
segment and allow the COEInstaller to perform the installation chores. This ensures a consistent
approach for all segment installations, and avoids potential conflicts between different segment installation
approaches.

Web-Based Applications

DII COE I&RTS: Rev 3.0 July 1997240

6.7 NT COE Descriptors

The descriptor files defined in Chapter 5 apply to the NT-based COE as well. This section is provided as a
quick reference for items that are NT-related. Refer to Chapter 5 for complete discussion of each of the
descriptors discussed below.

General comments follow.

• NT segments are required to use SegInfo for descriptors; that is, NT segments may not use
individual descriptor files since these are obsolete. All obsolete conventions are explicitly invalid for
NT segments and are flagged as errors by VerifySeg.

• Pathnames must be given using ‘\’ in conformance to the Windows environment.

• Segments should not need to specify a disk drive because such designations are considered to be

advisory only. For backwards compatibility, when a disk drive designation is given, it and any
associated pathname must be enclosed in double quotes. This is required so that the tools can
distinguish between use of ‘:’ as a field delimiter for descriptor lines, or as a separator between a disk
drive name and a directory pathname.

• In accordance with commercial standards, executable descriptors shall have either a .EXE extension

(for compiled programs) or a .BAT extension (for batch files). This applies to the “scripts” used in the
installation process: DEINSTALL, PostInstall, PreInstall, and PreMakeInst. Segment
descriptor files may optionally have a .TXT extension.

• The SYSTEM_ROOT environment variable is set to indicate where the Windows system directory is
located. This environment variable may be used in the installation-related “scripts” at install time.

Comments related to specific descriptors follow.

AcctGroup

NT account groups must omit the shell parameter. It has no meaning in Windows.

COEServices

The $GROUPS and $PASSWORDS keywords are not supported for NT platforms. VerifySeg generates a
warning if a segment descriptor contains these keywords.

DEINSTALL.EXE and DEINSTALL.BAT

Chapter 5 indicates that DEINSTALL is executed prior to a segment being removed from the system. A
segment that does not include a DEINSTALL descriptor is a permanent segment and may be updated, but
not removed. In many situations, it is desirable for the segment to be removable, but there are no actions
that DEINSTALL must perform. For this reason, the NT-based COE allows DEINSTALL to exist as a zero-
length file and it may exist as a file with no extension.

FileAttribs

Because file permissions are different between the UNIX and NT environments, FileAttribs is
operating system specific. The COE tool MakeAttribs, when run on an NT platform, will create a
proper FileAttribs file for NT segments. C style #ifdef preprocessor statements may be used to
combine a UNIX and NT FileAttribs descriptor.

Web-Based Applications

DII COE I&RTS: Rev 3.0 July 1997 241

Hardware

The diskname field for the $PARTITION keyword must be a disk drive name. For example, to indicate
that a segment requires 20MB on the F disk drive, the proper $PARTITION statement is

$PARTITION:”F:”:20480

Network

The Network descriptor is not presently supported for NT platforms. VerifySeg will issue a warning if
a Network descriptor is found for an NT segment.

Processes

The $RUN_ONCE keyword identifies process that should be run the next time the system is started. This
keyword requires authorization by the cognizant DOD Chief Engineer because of potential security and
performance risks.

Registry

The Registry descriptor allows the segment to have the COEInstaller create registry key entries.

ReqrdScripts

Environment extension files are not supported for NT platforms. Therefore, the ReqrdScripts
descriptor is not supported for NT platforms. VerifySeg will print a warning if this descriptor is present.

SegName

The $COMPANY_NAME and $PRODUCT_NAME keywords allow a COTS segment to specify company and
product names for the registry. These are added by the COEInstaller , and must not be specified if the
COTS product creates registry entries itself.

SharedFile

This descriptor allows the segment to identify shared DLLs.

7. Web-Based Applications

The DII COE includes a collection of COE-component segments to support Web-based applications. This
provides a foundation for the development of Web-based segments within the DII COE, and for mission
applications built on top of the COE. The Web component segments provide services and infrastructure for
the delivery of HTML files54 from a Web server to a Web browser. One of the key goals in adding Web
capabilities to the DII COE is to foster sufficient discipline to prevent anarchy, while permitting a flexible
Web runtime environment.

The COE Web component segments are designed to meld diverse system and operator requirements while
benefiting from advances in Internet technology and functionality. Evolution of Web component segments
is driven by several factors:

54 The term “HTML file” is used throughout this chapter to refer to hyperlinked pages that may be traversed
from a Web browser. These files may be documents or HTML pages in the traditional sense, but may also
contain “executables” in the form of applets or other techniques.

Web-Based Applications

DII COE I&RTS: Rev 3.0 July 1997242

• architectural freedom for creativity and rapid progress,
• reduction of site maintenance workload,
• improved configuration control,
• improved service to customers with low-bandwidth,
• customer demand for access to (and sharing of) remote data sources, and
• the rapid pace of Web innovation.

This chapter is devoted to explaining the COE Web component segments and to providing implementation
guidance for creating Web mission-application segments. It should be noted that the majority of users will
likely use PCs, so this is considered the target client platform for Web development. However, the
principles and techniques presented here work equally well for the UNIX environment.

Section 7.1 discusses fundamental COE Web concepts. Section 7.2 describes Web administration and user
accounts. Section 7.3 contains miscellaneous information pertinent to developing Web segments, including
an overview of HTML requirements for the COE Web. Section 7.4 describes what happens when Web
segments are installed, and section 0 completes the chapter with a brief discussion of supported
configurations.

Fundamental COE Web Concepts

DII COE I&RTS: Rev 3.0 July 1997 243

7.1 Fundamental COE Web Concepts

All Web-based segments must be DII-compliant. This applies to Web-based COE infrastructure software as
well as mission-application software. The principles that govern how segments are loaded, removed, or
interact with one another are the same for all DII COE segments, but COE Web component segments are
treated more strictly because they are the foundation for a Web-based application.

It is important to recognize that just because a Web segment is part of the COE, it is not necessarily always
present or required. Considerable flexibility is offered to customize the environment so that only the
segments required to meet a specific mission application need be present at runtime. This approach allows
minimization of hardware resources required to support a COE-based system.

7.1.1 COE Web Component Segments

The DII COE provides a collection of component segments to provide the architectural framework for
managing and distributing data from a common Web server. Management Services include system
administration, security administration, and segment registration. System administration includes the ability
to monitor system performance. Security administration includes a tool for managing Web-based access
control lists (consistent with the format required by the Web server), and the ability to create and manage
Web user accounts.

These services are independent of any particular segment. It is anticipated that diverse segments will be
able to coexist, providing access to a wide variety of data sets. However, integration and/or cooperation
between segments is the responsibility of the segment developers.

7.1.1.1 Web Servers

A Web server is required to provide the interface between users and Web-based applications. The DII COE
provides a Web server as a COE-component segment, thereby eliminating the requirement for individual
Web segments to include a Web server. A Web mission-application segment shall not include its own Web
server. It is required to use the Web-server segment provided by the DII COE. This is in keeping with the
overall DII COE philosophy of not duplicating DII COE services.

A site installation may contain multiple platforms set aside to function as Web servers. The platforms may
also serve other functions, but it is expected that sites will use firewalls to isolate Web servers from the rest
of the world. For this reason, the COE requires that all Web-application segments be loaded on a machine
that already contains a Web server. That is, the application interface must be on the Web server but other
parts of the system that the application needs to access (e.g., database server) need not reside on the Web
server.

7.1.1.2 Web Browsers

The COE includes a Web browser, and COE-based systems will use that browser. However, non-COE
based systems can use their native browser to access services provided by the Web server. Web technology
is evolving at a rapid pace, so the Web server must accommodate and address evolving Web standards. The
DII COE Web server does not restrict or constrain the types of HTML files (Virtual Reality Modeling
Language [VRML], executable content, etc.), subject to appropriate security considerations.

7.1.2 Web Mission-Application Segments

Web-application segments shall place their HTML files in the directory

$DATA_DIR/local/SegDir/pub

Fundamental COE Web Concepts

DII COE I&RTS: Rev 3.0 July 1997244

where SegDir is the segment’s assigned directory. The HTML files are thus placed in the local data
directory on the machine that hosts the Web Server(s). The COE creates a symbolic link from

COE/Comp/WebSvr/data/pub/SegDir

to this directory at installation time. The reason this symbolic link is created is so that the Web server can
access HTML files provided by the segment. Only Web component segments are allowed to modify HTML
files created by other applications, which is typically for the purpose of inserting value-added HTML tags
prior to delivery to a browser. The importance of these principles cannot be overemphasized to avoid
environmental conflicts between software components.

Web Account Groups

DII COE I&RTS: Rev 3.0 July 1997 245

7.2 Web Account Groups

Operating systems such as UNIX and NT assign individual login accounts for users. There may also be
configuration files for login accounts that establish a runtime environment context. The Web environment
presents a different set of requirements for user accounts since there is no need for a standard UNIX or NT
login account or any of the associated configuration and environmental files. Instead, Web user logins are
validated by the Web server that is also responsible for enforcing access control, including restrictions
based on the combination of user account and IP (or IP class) on a directory-by-directory basis.

Web account groups can be used to share access privileges among a collection of users according to how
they will use the system. This technique is used in the COE to identify three distinct account groups:

• Web System Administrator Accounts,
• Web Security Administrator Accounts,
• Normal Web User Accounts.

Other account groups may exist for specialized system requirements, but all account groups follow the
same rules. Within a Web account group, profiles can be created as with normal COE account groups
defined in Chapter 2.

7.2.1 Web Security Administrator Account

Security administration in the COE Web is implemented through a special Web account for managing the
Web user account database. Precise functionality of security management is dependent on the Web server
and its configuration. The role of the Web security administrator includes:

• Ability to create individual Web login accounts
• Ability to create operator Web profiles
• Ability to review the Web server error and user access logs

The Web security administrator need not be the DII security administrator, but this is recommended to
centralize security management.

7.2.2 Web System Administrator Account

System administration consists of a specialized collection of functions that allow a system administrator to
perform maintenance, monitoring, and configuration operations. The role of the Web system administrator
includes:

• Ability to create and to restore backup tapes
• Ability to monitor and configure the Web COE-component segments
• Ability to establish site-specific products and links for user access
• Ability to review the Web server error and user access logs
• Ability to tailor Web applications (consistent with the application design) to balance overall system

performance

The Web system administrator need not be the DII system administrator, but this is recommended to
centralize system administration.

7.2.3 Web User Accounts

Most operators will not require, nor will Web administrators grant access to, capabilities described in the
previous sections. Most system users will be performing mission-specific tasks. The precise features

Web Account Groups

DII COE I&RTS: Rev 3.0 July 1997246

available depend upon which mission-application segments have been loaded and the profile assigned to
the operator.

The COE establishes individual operator login accounts and stores user-specific data items, including
profile information describing which options and services are available to the operator. Since users do not
directly access Web segments (i.e., the Web server provides the interface between the browser and
segments), many of the normal DII COE requirements for additional user-specific directories and services
do not apply.

Miscellaneous

DII COE I&RTS: Rev 3.0 July 1997 247

7.3 Miscellaneous

The use of server-side includes (SSIs)55 is not allowed because of the additional complexity it imposes on
the Web COE in the control of data. The subsections that follow provide additional requirements and
information for Web segments, beginning with HTML specifications.

7.3.1 HTML Specification

The rapid pace of innovation in Web technology makes it difficult to standardize on the exact HTML
syntax that Web-application segments must support. Indeed, any HTML standard is only as good as the
browser implementation. HTML version 3.2 is the latest standard, but it is not fully featured. For example,
it lacks the <FRAMES> tag. Furthermore, version 3.2 is not fully supported by all popular browsers (e.g.,
Netscape 3.0 does not support style sheets). DII COE Web segments must, as a minimum, support
HTML 3.2 and frames. The application segments should be designed to work with browsers that do not
support frames or all parts of the HTML 3.2 specification, or at a minimum notify “disadvantaged” users.
The Web server must be able to support HTTP 1.0 and HTTP 1.1 transport protocols.

An HTML file consists of a document head and a document body, as identified by the HTML tags <HEAD>
</HEAD> and <BODY> </BODY>. For the purposes of this section, it is convenient to separately discuss
the data content within these tags.

7.3.1.1 HTML <HEAD>

The HTML head shall contain three important data elements:

• Title (determined by the Web segment that creates the HTML file)

• Key words (used by Web search engines to identify and index Web sites for global search)

• Expiration date (using EXPIRES) to assist browsers in automatically rejecting out-of-date information

Key words or subjects are appended to META tags and significantly facilitate the ability of Web search
engines to locate data services at other Web sites. These tags must not contain classified information (even
if the entire system is running on a secure network); access to the underlying data will only be granted to
users with valid accounts at the associated Web site. The use of Web search technology (bots, crawlers,
spiders, etc.) requires coordination with each Web site since a login/password is required for any DII-
compliant Web server connection; importantly, access to data by search engines can be provided for
HEAD-only information (once a login and password have been authenticated for the special “HEAD-only”
account). Additional restrictions can be implemented using access control lists in each directory. A segment
that only generates dynamic, on-the-fly, HTML files may create a static HTML file with identification
information specifically for the purpose of identifying the segment’s information content. The HTML file
shall be called segment_name.htm. The format of this HTML file shall be a standard HTML file with
META tags for key words and subjects, thereby allowing HEAD-only searches to gather profile
information.

7.3.1.2 HTML <BODY>

The DII COE approach is to specify the minimum set of HTML tags that are currently supported, or likely
to be supported, by the popular browsers (e.g., from Microsoft and Netscape). The COE does not explicitly

55 Server-side include is a technical process whereby HTML pages are parsed by the server prior to the
page being sent to the client. This allows the server to dynamically insert information into the page before it
is sent to the client.

Miscellaneous

DII COE I&RTS: Rev 3.0 July 1997248

prohibit the use of additional HTML tags as required by a Web segment to satisfy its requirements, but
provision may be made by the segment developer to alert “disadvantaged” users to potential problems.

Each Web segment is responsible for properly classifying every HTML page that it creates. The
classification marking should be placed at the top and bottom of the HTML page (there is no notion of page
breaks in HTML).

7.3.2 User Interface

Innovations to the Web interface offer improved user interaction and navigation via the FRAME tag, Java,
JavaScript, and ActiveX functionality. These techniques enhance the user interface capabilities of Web-
based applications, but at a price. The security community has expressed concerns about the potential for
viruses or other malicious software spread through Java applets and applications. Developers should note
that DISA is presently formulating a policy on Java usage for creating applets, and for execution by Java
Virtual Machines. An update will be issued when an appropriate policy and guidance have been
formulated.

Refer to the DII User Interface Specification for further style-related guidance in developing Web-based
applications.

Installing Web Mission-Application Segments

DII COE I&RTS: Rev 3.0 July 1997 249

7.4 Installing Web Mission-Application Segments

Installation of Web segments, whether they are COE-component segments or mission-application
segments, is accomplished as for all other segments. There are some special considerations for Web
mission-application segments.

Web mission-application segments must reside on the same platform as a Web Server. The COE
installation tools will not allow a Web-application segment to be loaded unless there is a Web-server
segment already loaded.

During installation of a Web mission-application segment, two symbolic links for use by the Web server
are established, namely

• A link for accessing Web pages from the directory
 COE/Comp/WebSvr/data/pub/SegDir

 to the directory
 $DATA_DIR/local/SegDir/pub

• A link for accessing Common Gateway Interface (CGI) programs from the directory
 COE/Comp/WebSvr/data/pub/cgi-bin/SegDir

 to the directory
$DATA_DIR/local/SegDir/cgi-bin

Also, the httpd.conf file will contain an “execution” statement and a “pass” statement of the form:

Exec /cgi-bin/* /h/COE/Comp/WebSvr/data/pub/cgi-bin/*
Pass /* /h/COE/Comp/WebSvr/data/pub/*

Here are two examples to clarify the navigation process for locating HTML files and CGI programs.
Suppose a segment called MYSEG uses a gateway program called TEST, which is referenced in an HTML
page as

FORM ACTION=/cgi-bin/MYSEG/TEST

This program will be found by the Web server as follows. First, the “execution” statement is used to
convert the file’s location to

/h/COE/Comp/WebSvr/data/pub/cgi-bin/MYSEG/TEST

Then, the symbolic link transfers this reference to

$DATA_DIR/local/MYSEG/cgi-bin/TEST

As a second example, suppose an HTML page contains a hyperlink to a file

HREF=http://hostname:9000/MYSEG/DOC

Once the connection is established to a DII-compliant Web server, then the “pass” statement is used to
convert the location of the HTML file to

/h/COE/Comp/WebSvr/data/pub/MYSEG/DOC

Then, the symbolic link transfers this reference to

$DATA_DIR/local/MYSEG/pub/DOC

Installing Web Mission-Application Segments

DII COE I&RTS: Rev 3.0 July 1997250

Note: The DII COE establishes the SUID for the Web server.
Applications must not be created which depend upon a particular
setting. Instead, segments shall allow the COE segment installer
to handle such details automatically.

All HTML files in $DATA_DIR/local/SegDir/pub must be readable by the Web server. The
Segment Installer will automatically set the permissions on Web HTML files when the segment is loaded.
Furthermore, all HTML files created by the segment for Web access must be placed in
$DATA_DIR/local/SegDir/pub and must be readable by the Web server.

DCE-Based Applications

DII COE I&RTS: Rev 3.0 July 1997 251

7.5 Supported Configurations

The COE Web component segments establish an open architecture that is not tied to a specific Web
browser. They use industry standards for interfacing to the Web server (e.g., CGI) and de facto standards
for HTML (as contained in HTML 3.2 and extended by the leading browsers). The HTML specification has
not progressed to the point where a common presentation is guaranteed across all popular browsers.

The list of supported Web servers and Web browsers is heavily dependent on market forces as the Web
industry evolves to satisfy commercial requirements. In general, it is desirable to minimize any specific
dependencies on a particular browser or server. Presently, there is no commercial agreement on Web server
standardization and much work remains to evaluate the leading candidates. Refer to the DISA DII COE
Chief Engineer for the current status on server and browser requirements.

Precise hardware requirements in terms of memory, disk space, etc. is a function of many factors and
cannot be specified in a general context. Refer to the DISA DII COE Chief Engineer for hardware
configuration options.

8. DCE-Based Applications

The DII COE is designed to support applications using the distributed client/server computing model.
There are many ways to implement a distributed client/server environment. The DII COE provides the
Open Software Foundation’s (OSF) DCE as a baseline for distributed architecture/standards. To be DII-
compliant, there is no requirement to use DCE as the baseline for a client/server implementation or that
segments be client/server-based. However, if the application uses RPCs (Remote Procedure Calls), they
must be compatible with DCE RPCs.

DCE is an integrated set of services that supports the development, use, and maintenance of distributed
applications. A set of written standards and a package of developer’s software are available from the OSF.56

Based on these, a large number of applications have been written by various software vendors for end
users. Use of DCE is not restricted to UNIX environments. Clients or servers may operate on other
operating systems, although most applications employ Microsoft Windows or Windows NT clients and
UNIX servers.

The purpose of this chapter is to provide the minimum essential information necessary for developers to
begin creating DCE mission applications. It is not a tutorial on DCE, nor does it provide an in-depth
discussion of development tools, management procedures, or compliance criteria (in the sense of DCE
standards). Developers using DCE should refer to OSF or vendor documentation for general guidance on
DCE.

The DII COE provides a COTS implementation of a DCE server and a DCE client. Developers shall use
these rather than providing their own copy of an alternative COTS DCE product. This is required of all
segment developers, including mission-application developers, because the end COE-based system is likely
to be installed on a LAN that includes multiple COE-based systems where incompatible DCE products
could create interoperability and administration problems.

Note: Segments must specify the DCE attribute to make use of any of
the DCE features described here. A fatal error message will be
generated by the VerifySeg tool if a segment references DCE
segment descriptors but fails to indicate that it is a DCE segment.

56 DISA maintains a facility called the Operational Support Facility in the Washington, DC area.
Throughout this chapter, unless otherwise indicated, OSF refers to the Open Software Foundation and not
to DISA’s Operational Support Facility.

DCE-Based Applications

DII COE I&RTS: Rev 3.0 July 1997252

Refer to Chapter 5 for information on how to specify the DCE
attribute for a segment.

DCE Overview

DII COE I&RTS: Rev 3.0 July 1997 253

8.1 DCE Overview

OSF’s DCE is commercial software that provides a comprehensive set of services that support the
development, use, and maintenance of distributed applications. DCE allows diverse systems to work
together cooperatively and masks the technical complexities of the network. Because DCE is independent
of the operating system and network, it is compatible with many diverse environments.

The strength and appeal of DCE stem from its ability to make a group of loosely connected systems appear
as a single system to Information Systems (IS) staff, end-users, system administrators, and application
developers. Applications executed under DCE take advantage of untapped resources on networks by
finding the platform best suited for a particular job. Similarly, complex tasks can be easily split among
multiple computers on the network to reduce computing time and improve performance. From a security
perspective, users in a DCE-enabled computing network need only log in once for access to all network
platforms.

Many compare the OSF’s DCE to wiring or plumbing because it provides the underlying transport layer
that enables distributed client/server applications to interoperate across a heterogeneous environment. DCE
currently consists of the following services:

• RPCs
• CDS
• Distributed Time Service (DTS)
• DFS
• Security Service
• Threads.

8.1.1 Remote Procedure Call

The key to making many disparate resources function logically as one system within DCE is the RPC. In
DCE, RPCs let multiple computers execute applications, or parts of applications, on the platform chosen by
the developer as best suited for the task.

The RPC makes a wide variety of application capabilities possible that were previously either impossible or
extremely difficult to implement. These capabilities include the following:

1. allowing multiple clients (in a client/server network) to interact with multiple servers, and multiple
servers to handle multiple clients simultaneously,

2. the ability for clients, through DCE’s Directory Services, to identify and locate network users by

logical service name,

3. protocol independence across the network for any platform, and

4. secure communications across the network.

8.1.2 Cell Directory Services

The DCE CDS provides a single naming model throughout a distributed environment. Directory Services
let users access network services, such as printers, servers, and other network platforms, by name, without
the necessity of knowing where the resource is located within the network. This lets users access a network
resource even if the resource has been moved to a different physical network address.

DCE Overview

DII COE I&RTS: Rev 3.0 July 1997254

The CDS can make use of its built-in X.500 Global Directory Service (GDS) for locating resources in
external cells, or can make use of Domain Name Service (DNS) for this purpose. Cell names are
constructed differently depending on which approach is selected.

• The DII COE will use DNS to locate external cells, and therefore will use DNS-style cell names.

8.1.3 Distributed Time Service

DCE DTS allows multiple platforms to work together to share information without timing problems that
might affect event scheduling and duration. DTS regulates system clocks on each network computer so that
they match each other. Clocks are synchronized, and the service ignores faulty system clocks. The DCE
Time Service uses authenticated DCE RPC so that, unlike the Internet Network Time Protocol, the DCE
global clock synchronization is secure. Also, to support network sites that wish to use time values from
outside sources, DTS supports the Network Time Protocol standard. The DCE Time Service also includes a
published Time Provider Interface to allow it to receive inputs from other reliable time sources, such as
Global Positioning Satellite (GPS) or other military systems.

• DCE DTS provides intra-cell clock synchronization in the DII COE. Inter-cell synchronization is not
supported.

8.1.4 Distributed File Services

The DCE DFS is a fundamental element for information sharing in DCE-enabled networks. It is one of
many facilities that could theoretically be built on the foundation provided by DCE’s Core Services. DFS
unites the file systems of all network nodes for a consistent interface, making global file access as easy as
local access. It replicates files and directories on multiple network machines for fast and reliable access,
even when communication lines and network hardware fail. It also caches copies of currently used files at
the requesting node to minimize network traffic and provide fast data access.

Note: DFS is not presently provided as part of the DII COE. It is
described here for completeness sake. Specific communities may
implement DFS on top of the DII COE. Information in this
chapter about DFS describes it as it is planned to be used by the
GCCS community. This may serve as a useful model for other
mission domains.

8.1.5 Security

While security maintenance and administration are simplified for one central system behind a glass wall,
security for dozens of computers scattered across a wide area network, all operating as a single entity, is
much more complicated. DCE’s Security Services ensures distributed security. The Security Service
software layer is made up of three mechanisms: authentication, authorization, and user registry. DCE
invokes these services through the RPC, which maintains the integrity of information passed across the
network.

The authorization mechanism grants authorized users access to resources and rejects requests from
unauthorized users. DCE implements Access Control Lists (ACL) based on a draft POSIX standard that
provides a fine-grained object/operation security authorization model.

The user registry permits users to access multiple network resources through a single password and single
login. The registry is a single database of user information that may be replicated around the network. User
passwords and security-related attributes are centrally stored and universally available.

DCE Overview

DII COE I&RTS: Rev 3.0 July 1997 255

Many security features, including auditing, delegation, and a registry extension to support non-UNIX
systems, are provided by DCE. Improved security is one of the primary motivations for the movement to
DCE for DII applications. OSF DCE provides the following significant features related to security:

1. DCE Authentication provides a secure mechanism (unforgeable) for establishing identity. This
prevents a user from compromising the authentication process by using a ‘root’ account on any
machine to project UNIX credentials.

2. Authorization for execution of applications is based on DCE credentials in addition to UNIX

credentials. The granularity of execution control on a base UNIX system is limited to an
owner/group/world model that is not sufficiently flexible. As a result, almost all applications are set to
enable world execute permission.

3. Authorization for operation invocation is based on DCE credentials. Most existing applications either

do not have granular access decisions or have implemented their own means of access control. An
example of the latter is a database server that may define roles as a means of protecting classes of
operations. New applications and those being migrated need this more consistent means of defining,
managing, and performing these operations.

4. DCE security allows a client to securely project its identity, including memberships, in other security

groups. This allows authorizations to be group-based rather than user-based.

5. Single-login allows all related access decisions to be based on the same distributed identity. Without

this capability, users may be required to login to multiple systems or applications, and security
administrators must keep multiple identities and security files in synchronization.

6. Execution auditing records DCE and UNIX credentials. This records the identity of anyone running an

audited application (see below).

7. Protection against packet insertion/replay, packet interjection, and eavesdropping can be achieved

when using DCE RPCs at the appropriate security level or when using the Generic Security Services
API (GSSAPI) to protect data transmitted over the network.

Note: For the near term, security for DII distributed applications will be
provided by the DCE Security Service, which is based on
Kerberos. The OSF and DOD are exploring ways to link DCE
security with DOD initiatives such as MISSI. Other security
mechanisms may be provided in future versions of the DII COE
as the COE migrates from a software-based security solution to a
hardware-based solution.

8.1.6 Threads

The underlying Threads Service is used by several DCE services, including the RPC. Threads are programs
that use “lightweight” processes to perform many actions concurrently. Threads are particularly useful in
allowing server applications to process multiple requests concurrently. DCE Threads are based on the
POSIX threads standard. OSF has designed the multi-threading capability of the Threads Service to be
easily accessible by programmers wishing to use it in applications. Most commercial applications using
threads are written in C, so these DCE services can be accessed through the C programming language.
Bindings exist for Ada, as well as other high-level programming languages.

DCE Overview

DII COE I&RTS: Rev 3.0 July 1997256

8.1.7 Client/Server Concepts

DCE is specifically designed to manage the distribution of processing across multiple platforms. It is a
powerful infrastructure for building client/server architectures. The client/server computing model for DCE
introduces a few additional terms.

1. In the DCE context, a server is a single executable program that provides services to clients. An
example of a server is a DBMS or a map server that provides map images to a calling application. A
site can employ multiple servers to create a more available or more balanced service environment. A
DII segment can contain multiple servers each performing some related service.

2. A server implements one or more services, each of which is offered through an interface. Interfaces are

well defined, using the DCE Interface Definition Language57 (IDL), and are the concrete descriptions
of a service. Usually, a server implements at least two interfaces. One provides the operational
interface for client requests. The other provides a management interface (e.g., for security). Internally,
all DCE servers implement other interfaces used for querying, stopping, or reconfiguring the server.

3. An interface provides access to one or more operations, each of which corresponds to a specific

function or procedure call. For example, a complex math interface could provide separate operations
for complex addition, subtraction, multiplication, and division. The operations within an interface
should be very closely related.

4. In DCE clients have the option of locating one or more copies of a server through use of the DCE

CDS. The client presents a CDS name (or listing) and, optionally, a resource element (object Unique
Universal Identifier [UUID]). The CDS name corresponds with the logical service name rather than a
machine or hostname. This indirection allows DCE to provide location independence and employ
multiple compatible servers for availability or load balancing.

5. Each operator using DCE is identified with a unique DCE principal. A DCE principal has a DCE

account maintaining its DCE identifier (UUID) along with its UNIX identity (uid, gid). A DCE
principal will map uniquely to a UNIX userid.

6. Each DCE server is also identified with a particular principal. For security reasons, server principals

should map to UNIX userids that are not allowed to login (i.e., without a login password). These UNIX
userids correspond to the concept of a “system account” (like uucp).

7. Although it is not necessary for the client and server to be installed on separate machines, one of the

primary reasons for constructing client/server applications is to share access to one or more server
resources by multiple clients. Since the segment is the smallest installation unit, the client and server
portions of an application are usually delivered in separate segments.

57 The DCE IDL should not be confused with the CORBA IDL. Both are similar in concept, but differ in
implementation.

DII COE DCE Services

DII COE I&RTS: Rev 3.0 July 1997 257

8.2 DII COE DCE Services

The DII COE supplements the COTS DCE product with a number of tools to assist the developer in
creating segments that use DCE and in installing and managing DCE at an operational site. Commercial
products are preferable, but many of the tools and features required are not available commercially. The
tools discussed in this section, and the DCE-related tools described in Appendix C, are specifically
designed for the DII COE rules for DCE applications. In addition, development of DCE guidance for the
COE highlighted some issues that must be addressed in order to assist in the development of DCE mission-
application segments and implementation of DCE in the COE.

8.2.1 Standard Server Installation

The first part of a DCE server installation process must run as root. Installation of the DCE server has been
standardized for the COE and is part of the DCE COE-component segment. Installation uses a
parameterized dcecp script to create an initial CDS entry and principal for the segment, and give it
permissions to create the rest of the structure.

8.2.2 Standard Server Initialization

A secure DCE server must make between 7 and 30 DCE calls on initialization to establish configuration
and security information and to register its presence to a CDS. The COE provides a standard server
initialization routine.

8.2.3 Standard Client Binding

DCE provides an “automatic” binding routine that will find a suitable server and make a connection.
However, this does not work for secure connections or the recommended object model. The alternative
requires the client to deal with CDS querying, security, and the possibility of missing servers. The COE
provides a standard client binding to allow COE clients to make a single call and not have to deal with this
level of complexity.

8.2.4 Standard Reference Monitor and ACL Manager

Secure DCE servers must implement a Reference Monitor (RM) routine to verify the client’s credentials
against a server’s ACL, and an ACL manager to maintain application ACLs. For the DII COE, a standard
RM and ACL manager are provided as a library routine to every server developer so that security decisions
are made in a standard, certifiable manner. The OSF provides a boiler-plate RM, which has been
parameterized and “segmented” for use by DII applications.

8.2.5 DCE Verification

The VerifySeg tool includes verification of DCE application segments. Refer to Chapter 5 for the
appropriate segment descriptor entries and to subsection 8.3.4 for a brief synopsis of the required segment
descriptors. COE tools verify that a DCE segment has been properly installed and that CDS entries meet
the COE guidelines and agree with the entries in the relevant DCE segment descriptor.

8.2.6 Template Application

Creating DCE segments can be difficult because of complexities within DCE itself. To aid segment
developers, the COE Developer’s Toolkit contains an example template application. This application serves
as a working model and template for developers of other DII COE applications using DCE.

Runtime Environment

DII COE I&RTS: Rev 3.0 July 1997258

8.3 Runtime Environment

Many of the security-related objects and concepts within the rest of the COE and UNIX have counterparts
within DCE, although the DCE object often has more powerful features and attributes. This section states
requirements for the development of client/server applications using DCE. The guidance provided shall be
followed by all DII applications using DCE, including applications that do not yet fully comply with the
DII COE. Failure to comply with this DCE guidance may result in operational conflicts between
applications.

This section begins with a description of the directory structure required for DCE segments. The general
structure for segments is described in Chapter 5, but it is useful to collect the information into this section
as an easy reference for relevant information. Then, the conventions for CDS and DFS for the COE are
described. A summary of segment descriptors relevant to DCE are described and the remainder of this
section gives specific information on COE conventions for DCE, organized by server and client.

8.3.1 Segment Directory Structure

DII segments are delivered in accordance with a fixed file/directory structure defined in Chapter 5. Some
DCE information is also delivered in UNIX files. Other information, such as CDS information, must be
delivered as files and built in CDS as part of installation.

Figure 8-1 illustrates the DII COE directory structure for segments. The shaded portions indicate the
additional DCE-specific information which is required. Chapter 5 contains information about segment
descriptors that are required for all segments, including DCE segments.

The additional information required to describe DCE segments is as follows:

• IDL for all interfaces shall be delivered in files of the form interface.idl in the segment’s
include directory, where interface is the name of the interface.

• DCE installation/deinstallation dcecp scripts shall be delivered in files named dce_install.dcp
and dce_deinstall.dcp in the segment SegDescrip directory.

• Additional DCE-related configuration information is recorded in the DCEServerDef and
DCEClientDef segment descriptors. See subsection 8.3.4.

Runtime Environment

DII COE I&RTS: Rev 3.0 July 1997 259

SegDir

dce_install.dcp
dce_deinstall.dcp
DCEDescrip

dcecp

server1.dcp
server2.dcp
servern.dcp

Icons Menus fonts app_defaultskeytab

server1.tab
server2.tab
servern.tab

interface.idl

SegDescripInteglibincludemandatabinScripts

stubs.o

Figure 8-1: COE Directory Structure for DCE Segments

8.3.2 CDS Structure

Figure 8-2 illustrates the CDS structure for a DII COE cell.58 The following description summarizes the
structure:

• Server configuration entries are included under

 /.:/hosts/hostname/config/srvrconf/servicename.

 These entries will be built by the segment DCE installation script.

• User principal DCE entries have the same name as the UNIX userid. They are included in CDS under

/.:/sec/principal/username, but can be referenced in security APIs using just the username.

• Server principal DCE entries have the name hosts/hostname/servicename. These entries are

referenced in CDS under
 /.:/sec/principal/hosts/hostname/servicename.

58 Although the CDS directory is described using notation that is similar to the UNIX directory/file system,
the CDS is entirely independent from the UNIX file system. The CDS structure includes containers that
correspond with UNIX directories, and entries that correspond to leaf nodes or files.

Runtime Environment

DII COE I&RTS: Rev 3.0 July 1997260

U
B

ce
lln

am
e

m
as

te
r

se
c

df
s

se
rv

er
1

se
rv

er
2

se
rv

er
n

ho
st

_n
am

e
ce

ll_
na

m
e

ce
ll_

al
ia

se
s

po
st

_p
ro

ce
ss

or
s

JO
P

E
S

G
SO

R
T

S
E

M
U

B

JO
P

E
S

G
SO

R
T

S
E

M
U

B

ap
pl

ic
at

io
n

D
B

A
dm

Sy
sA

dm

us
er

1
us

er
2

us
er

3

se
rv

er
1

se
rv

er
2

se
rv

er
n

ho
st

1
ho

st
2

ho
st

s

E
M

C
om

p

se
rv

er
1_

pr
of

ile
se

rv
er

2_
pr

of
ile

se
rv

er
3_

pr
of

ile

se
rv

er
1

se
rv

er
2

se
rv

er
1

se
rv

er
2

se
rv

er
3

ob
je

ct
s

ho
st

2
gr

ou
ps

ho
st

1

C
O

E
G

SO
R

T
S

JO
P

E
S

dc
e

us
er

se
rv

er
W

at
ch

te
am

pr
in

ci
pa

l
pr

of
ile

gr
ou

p
or

g

h
su

bs
ys

se
c

fs
lo

ca
lh

os
tn

am
e_

C
H

kr
bt

gt
la

n_
pr

of
ile

se
rv

er
1

se
rv

er
2

se
rv

er
n

sr
vr

ex
ec

sr
vr

co
nf

ho
st

da
ta

xa
tt

rs
ch

em
a

cd
s_

se
rv

er
co

nf
ig

se
lf

au
di

t_
se

rv
er

ho
st

n
ho

st
2

ho
st

1

ce
ll_

pr
of

ile
ho

st
s

/

se
rv

er
1

se
rv

er
3

Figure 8-2: CDS Layout for the DII COE

Runtime Environment

DII COE I&RTS: Rev 3.0 July 1997 261

• Security groups and organizations also appear in CDS under /.:/sec. (Directories
/.:/sec/group and /.:/sec/org respectively.)

• All server binding entries are contained under /.:/h. There is one container for each mission-

application segment, named with the segment’s assigned directory, and one container for the COE,
with sub-containers for each COE segment.

• Each segment container contains a profile entry for each service offered by the segment. This entry is

named /.:/h/SegDir/servicename_profile and serves as the starting point for all client
binding searches.

• There will be a service binding entry for each server for each host on which the server is installed. The

entry has the form
 /.:/h/SegDir/hostname/servicename.

 The name of each entry matches the service name.

• A groups container under each segment is used to store any server group entries used in the binding

search path.

• An objects container under each segment is used to store any object entries used to locate object

resources used in binding searches.

8.3.3 Distributed File System

Note: The DFS global cell directory structure is still being designed.
COE developers who intend to use the global cell must contact
the DII COE Chief Engineer.

8.3.4 DCE-Related Segment Descriptors

Chapter 5 details the segment descriptor information required for DCE segments. A synopsis of the
information is presented here as an aid to locating DCE-relevant information. Refer to Chapter 5 for
detailed discussion.

• The $SERVICES keyword in the COEServices descriptor should not be necessary for DCE
applications, since endpoints are defined dynamically.

• The $SERVERS keyword within the Network segment descriptor shall not be used for DCE services.

Instead, use the $DCESERVICE.

• The segment descriptor Permissions may be used, but it is preferable to implement the application

using DCE security services.

• The $DCEBOOT keyword is provided for DCE servers started by dced.

• Include a $PASSWORDS keyword in the COEServices descriptor to establish a UNIX userid for

each server principal.

• Document DFS files used with the $DFSFiles keyword.

This information is used to automatically configure, and verify, DCE CDS usage.

Runtime Environment

DII COE I&RTS: Rev 3.0 July 1997262

8.3.5 Server Issues

This subsection deals with issues involved in the design and implementation of DCE server applications.

8.3.5.1 Naming

The following guidelines apply to the naming of servers, interfaces, CDS names, and operations:

• The service name is the name that represents the logical service provided by a server. In the non-DCE
world, this name is put in the $SERVERS keyword. The purpose of $SERVERS is so that a client does
not have to reference the actual hostname of a server. Examples are masterTrk, slaveTrk,
masterComms. DCE servers are not tied to a specific host and hence do not use the $SERVERS
keyword (Network segment descriptor). The $DCESERVICE keyword is used instead to list the
services offered by this segment.

• The following convention shall be used to assign service names: A segment offering a single service

shall use names of the form SegPrefix_server where SegPrefix is the segment’s prefix.
Segments offering multiple services shall use SegPrefix_service where service is a meaningful
name for the service. This convention will be used in naming many DCE resources associated with a
service and will be represented in the text as servicename.

• Interface names also will be controlled to avoid duplication. The interface names shall be descriptive

of the function of the interface. Each interface shall include the segment prefix. Examples are:
MAP_location, MAP_access, and MAP_rdaclif for a segment (whose segment prefix is MAP)
offering three interfaces. Operation names become the names of remote APIs and shall also begin with
the interface prefix or a subset of it (e.g., location_find, access_read, access_update).
Operation names shall also be consistent with other COE requirements on naming of APIs.

 DCE will automatically provide a management interface for server applications. The only management

operation that is controlled is shutdown, which can only be performed by dced. If a server wants to
restrict other management functions, the server must deliberately disable them using the dced
management routines: dced_server_disable_if() and dced_server_enable_if().
Further information on server management can be found in Chapter 8 of the OSF DCE Application
Development Guide--Introduction and Style Guide (Rev 1.1).

 DCE will also automatically add an interface for managing ACLs. The example interface MAP_rdaclif

mentioned earlier uses the ACL manager API, rdaclif. The rdaclif interface consists of remote
procedures called by acl_edit and includes remote procedures to retrieve an ACL, replace an ACL,
and test whether a given client is allowed to perform a given operation.

• Names of services and interfaces need not be registered with DISA for approval. Inclusion of the

segment prefix ensures that names are unique.

The CDS directory is a naming system somewhat like a filesystem. It uses a similar convention for naming
its objects and directories. For example,

/.:/h/JOPES/JOPESdb_server

Servers typically use CDS for storing information about the location, interface numbers, and objects (i.e.,
resources) which they offer. Use of CDS naming requires as much rigor as does file system naming.

• Every DCE server segment shall be assigned a directory structure within CDS that parallels its file

system location (e.g., /.:/h/SegDir where SegDir is the segment’s assigned directory). All CDS
entries related to this segment are contained within this directory.

Runtime Environment

DII COE I&RTS: Rev 3.0 July 1997 263

In DCE, every DCE server runs under the identity of a DCE principal. Even servers offering the same
service but on different machines require a unique DCE identity in order to provide reliable authentication
and authorization. DCE principal names are directly tied to the CDS so server principal names can be
expressed as a global name or as a name relative to a cell. The global name is considerably longer due to
the need to unambiguously specify a principal regardless of the cell from which it originates. Within a cell,
the principal can be named without including any cell identifiers because DCE will automatically append
the cell information during processing.

• The convention for a DII DCE server is to use the principal name

/.:/hosts/hostname/servicename. Each DCE principal contains information relating to a
UNIX account that contains its uid. If each principal of the same service had a unique uid, control of
server file system resources would be difficult. Each server providing the same service will share a
UNIX uid by creating principal aliases. This allows each server to have a unique account with its own
password, home directory, etc., yet share the same DCE principal and UNIX account.

• There will also be a security group created for every DCE service. This group will contain all the

principals that represent the servers for this service. The purpose of this group is to allow instances of a
service on different machines to trust one another. The name for this group will be identical to the
servicename. Therefore a segment containing multiple services will have multiple security groups. If
an application requires additional DCE groups, they will all be prefaced with the segment prefix.

8.3.5.2 Interface Definition

DCE application interfaces are defined using the DCE IDL defined by OSF. All interfaces are identified
with a globally unique identifier that ensures that clients bind to a server offering the proper interface. IDL
interfaces also allow the identification of versions of an interface. The version numbering scheme allows
clients to bind to a server offering any compatible version. Assuming upward compatibility, versioning
allows servers to be upgraded independently of clients, and allows old clients to continue to operate with
new servers.

• DII-compliant applications shall make use of version numbers and shall provide upward compatibility
between versions.

8.3.5.3 Server Registration

Servers record information (bindings) in CDS that identify the interface resources and server location so
that DCE clients can find the server when a client requests its service. DCE stores information in CDS
structures in three types of records: profiles, groups, and server entries. The record name within CDS that
the client accesses can correspond to a specific server, a group of servers, or a CDS profile.59 Servers
within a group are considered to be completely interchangeable, and are selected at random. Profiles allow
the selection of alternative servers based on priorities.

Registration of DCE services shall follow the following guidelines:

• The server registration information within CDS shall follow the structure shown in Figure 8-2, which
uses the mission-application segment GSORTS as an example. Each segment shall have a directory
under /.:/h corresponding to the UNIX file system directory for the segment (see Figure 8-1). For
example, if SegDir is the segment’s assigned directory, it will have a CDS entry of /.:/h/SegDir.
(The segment’s assigned directory, SegDir, is established when the segment is registered.) Note that

59 The term CDS profile refers to a CDS entry used in locating alternative instances of a service. It has no
relationship to the term profile used elsewhere in the I&RTS to identify applications and resources available
to a class of users.

Runtime Environment

DII COE I&RTS: Rev 3.0 July 1997264

COE-component segments are underneath /h/COE/Comp so their corresponding CDS entry is
/.:/h/COE/Comp/SegDir. Within the segment directory, individual server instances will be
registered under a directory for the host on which the server is installed. The name of the server entry
shall be the servicename.

• A profile entry shall be created for each service directly under the segment directory using the name
servicename_profile. A service can also use RPC groups to collect a set of equivalent servers.
Group entries shall be placed under /.:/h/SegDir/groups. The segment developer shall use the
profile entry as the starting point for binding requests within a client application. This is the name that
will be addressed by clients seeking a server.

• The server entry directly under the segment directory will always be a CDS profile entry. The name

will have the form servicename_profile. In the simplest case, the profile will contain a single
entry, pointing to the server entry for the host on which the server is actually installed. However, by
making the client address a profile entry even in this simple case, the server can be moved, or
alternative servers implemented, with no changes to the client.

For example, in Figure 8-2, the GSORTS segment contains three servers: server1, server2, and
server3. The server1 software is installed on host1 and host2, server2 is installed only on
host1, and server3 is installed only on host2. Each server instance is registered in CDS, as shown
above, during segment installation. The CDS profile entry server1_profile will contain pointers to
the two instances of server1, with appropriate priorities depending on whether these are equivalent
servers or one is a prime and the other a backup. The server2_profile and server3_profile
entries will point to the respective server entries. Note, however, that by simply installing a new instance of
server2 and making the proper entries in CDS, a client will be able to locate alternative instances of
server2 with no application software changes.

• Servers may implement a more complex arrangement of CDS profiles and groups within this structure.
A groups directory will be created under the application’s assigned directory as well as an objects
directory. The naming of entries underneath groups and objects is completely under the control of
the developer, within the structure above.

The DCE API supports the registration of servers at execution time by the servers. However, to reduce the
volume of changes, it is recommended that DII applications build most of the structure in advance, lacking
only the specific endpoint information. The specific endpoint (i.e., TCP port) is supplied at runtime to the
endpoint mapper and is not stored in CDS. Building the structure in advance also allows it to be constructed
using dcecp rather than the more complex C-language API. Installation scripts are discussed in more
detail below.

• DII-compliant applications shall register servers within CDS during segment installation. The
exception to this will be for tactical applications that are installed on systems that are transient
members of cells.

Note: This means that the CDS registration structure is not an indicator
that a server exists. The client needs to actually check to make
sure the server is alive.

• DII-compliant application servers shall use rpc_ep_register() on server startup to register the
endpoint with the endpoint mapper. This call is part of server_intialize(), as discussed below.

The structure above is designed for the case where service is provided by servers within the local cell.
However, DCE has no restriction on the location of the server. A profile entry may point to servers in a
foreign cell. This allows a profile to be constructed such that, for example, it would look for a server first in
the local cell, then within a near-by cell, and then anywhere. Profiles can also be used to establish

Runtime Environment

DII COE I&RTS: Rev 3.0 July 1997 265

preference for servers based on other criteria as well, such as the performance of the server hardware, or to
allow clients to select servers with compatible data representations to reduce data conversion overhead.

The following is required for cross-cell profiles:

• The required approach for accessing cross-cell services is to have a profile in each cell that references
local profiles on remote cells. The starting profile has the same name as the profile that is configured
into all clients. That is,

/.:/h/SegDir/servicename_profile

The local profiles will be similar to the profile set up for a single-cell implementation, and will point to
all servers within the cell. The primary profile gives priority to servers in the local cell before looking
in a foreign cell. This is illustrated in Figure 8-3. The local profile could also be a group if the local
servers are equivalent. A profile is required if one server is the master and one is a backup.

/.:/h/GSORTS

Priorities

9

GSORTS_local_Profile

host1

GSORTS
entry

host2

GSORTS
entry

Priorities

9
5

GSORTS_Profile

Priorities

9
9

GSORTS_local_Profile

/.:/h/GSORTS

GSORTS
entry

Cell1

Cell2

Runtime Environment

DII COE I&RTS: Rev 3.0 July 1997266

Figure 8-3: Access to Servers in Local and Foreign Cells

8.3.5.4 Server Startup

DCE servers are normally started by means outside of DCE’s control after the DCE environment is started.
DCE 1.1 introduced a facility for managing the startup and monitoring of DCE servers. This facility is
provided by the dced daemon and facilitates full security and remote control. When used in conjunction
with the client binding recommendations below, servers can be started only as needed, can be restarted in
case of failure, and can even be started along with any prerequisite processes as needed. The dced process
runs as root and is the parent of all DCE servers. Using the configuration information that it stores, it can
start the server under any userid/group pair in any directory. The $DCEBOOT keyword is used to identify
DCE servers started by dced at boot time.

The server startup function dce_server_register() is provided in order to simplify the
development of servers. Unfortunately, not all DCE 1.1 vendors provide this API. The function is included
in the dce_server_initialize()API discussed below.

8.3.5.5 Configuration

DCE servers contain a large number of configuration attributes that are often hard-coded in the application.
The coding of these attributes makes servers hard to change or move and maintain. The dced daemon
maintains an extensible server configuration database. DCE servers use this database to obtain their
configuration information. This database is secure and is remotely manageable. When dced starts a server,
it establishes an environment for the server based on its configuration record and allows the server to read
additional initial information, similar to the windows .INI file.

Server configuration information is maintained in CDS under a name of the form

/.:/hosts/hostname/config/srvrconf/servicename.

For more information, refer to the DCE Administration Guide.

The configuration information which dced currently maintains is shown in Table 8-1.

The configuration information is easily extendible by teaching the dced about new configuration
attributes. Additional attributes can be defined for any DII application as needed. Attributes will be
assigned names depending upon their scope. Attributes that are required as part of COE support shall be
named:

/.:/hosts/hostname/config/xattrschema/COE_attributename.

Attributes that are specific to a server segment shall be named:

/.:/hosts/hostname/config/xattrschema/SegPref_attributename

where SegPref is the segment’s prefix.

In the case of COE-component segments, adding an attribute requires prior approval of the DII COE Chief
Engineer. For mission-application segments, approval is required of the cognizant DOD Chief Engineer.

• Application developers are responsible for creating configuration entries as part of their segment
installation scripts (dce_install.dcp and dce_deinstall.dcp shown in Figure 8-1) invoked
at installation time.

Runtime Environment

DII COE I&RTS: Rev 3.0 July 1997 267

Information Description
arguments command-line arguments required by the server
directory the home directory in which to start the new server
gid the group identity under which the server will run
keytabs a list of keytab object UUIDs where the server stores its keys. Although a list

is permitted, only the first one is used.
program the name of the server program to run
prerequisites a list of server configuration object UUIDs which must be running
principals a list of server principal names under which the server runs. Although a list

is permitted, only the first one is used.
starton a list of modifiers for starting conditions (boot, explicit, failure)
uid the UNIX uid under which the server will be started
uuid a uuid which is assigned to the server object
services the DCE information about the operation provided. The following

information is defined for each operation:
annotation string describing the service

binding(s) protocol sequences which register the
service

flags modifiers affecting the service’s
mapping {disabled}

ifname the interface name

interface the interface UUID

objects a list of object UUIDs associated with
the service

Table 8-1: dced Configuration Information

• If the application is started by dced, the DCE daemon will ensure that the appropriate environment
(e.g., UNIX uid, gid, home directory, and calling parameters) is established before starting the server.
The server will use the dce_inq_server() API to obtain its configuration record. There is no
requirement for the server to use the configuration information, except to retrieve any relevant
extended attribute information and pass it to the initialization routines. Servers not started by dced
must use the dced_object_read() API to obtain this information.

8.3.5.6 Initialization

Every DCE server performs a set of functions in order to initialize. This includes registering one or more
groups and entries in CDS (if not already created), and creating and registering endpoints with the endpoint
mapper. In addition to these functions, a secure server must establish its identity (login), refresh its login
context, and periodically change its password.

• Servers do not normally need to perform CDS registration or unregistration during server startup or
cleanup. This is not necessary because the DII COE environment is rigorously defined and because a
client does not use the presence of CDS information as indication of server liveliness. Registration is
normally performed as part of server installation.

Runtime Environment

DII COE I&RTS: Rev 3.0 July 1997268

• Servers in a tactical environment may perform registration either at cell configuration time or the first
time a server initializes.

Without using a common server initialization API, a server normally performs anywhere from six to thirty
API calls. (See the O’Reilly DCE Security book for an example of the API calls required for a secure
server.) The sequence of calls is nearly identical for all servers in a well-controlled environment like DII
because the parameters are defined by the configuration record.

Note: A common server_initialize() API is defined and
provided as part of the COE to perform these actions. This
routine initializes the server, including security, using the
server’s configuration information.

A server using a special initialization sequence (as defined above) can retrieve its configuration information
to perform initialization. Following this guidance will allow servers to be started on demand and can be
truly configuration-less.

One of the most critical initialization functions of a server is to register endpoints with the endpoint mapper
in dced. This too is easily accomplished with the server_initialize API.

8.3.5.7 Security

To write a secure DCE application, besides the application code, the application developer needs to write
client code that obtains the proper authentication and forwards it to the server. Clients are usually
authenticated by the inherited login context created after dce_login. The COE provides a unitary login
feature so that DCE login is performed as part of user login. To use authenticated RPC, a client adds a
single call to the API rpc_binding_set_auth_info(). Clients that use automatic binding will need
to use the binding_callout option in the ACF file.

Once the client has been authenticated, the server code gets the privileges of the calling client and
determines the level of authorization possessed by the calling client. This code is called the reference
monitor and it performs the authorization checks. The reference monitor receives the client access request
from the server, retrieves the ACL of the object requested and checks the client’s authorization against the
ACL. The DCE Security Service supports two authorization protocols that can be used with authenticated
RPC: DCE authorization and name-based authorization. The DCE authorization protocol is based in part on
the POSIX file-protection model, but is extended with ACLs. An ACL is a list of entries that specify a
privilege attribute (such as group membership) and the permissions that may be granted to principals who
possess that attribute.

• To be DII-compliant, applications shall only use DCE authorization.

8.3.5.7.1 Authentication

Secure servers require DCE security accounts in order to participate in DCE authentication. Each account
consists of a principal, and membership in a single primary group and organization. The name of the
account is identical to its principal name. DCE security names can be as simple as

comms_server

or hierarchical such as

hosts/hostname/mapserver.

Runtime Environment

DII COE I&RTS: Rev 3.0 July 1997 269

• COE hosts shall use DCE principal names that align one for one with UNIX operator names for
interactive users. This will allow the use of the integrated login application supplied with DCE. Non-
user principals associated with DII servers shall use hosts/hostname/servicename.

The following DCE Security Service application program interfaces can be used to perform login for a non-
interactive principal:

sec_login_setup_identity()
sec_key_mgmt_get_key()
set_login_validate_identity()
sec_key_mgmt_free_key()
sec_login_certify_identity()
sec_login_set_context()

These functions will be performed automatically when using the DCE-provided API,
dce_server_sec_begin().

Secure servers must store their passwords in files since they are not capable of normal interactive login.
These files are known as keytab files.

• For the DII COE, each application segment shall use its own keytab file. Servers shall use names that
are of the form servicename.tab. Keytab files will be placed in the directory
/h/SegDir/data/keytab as shown in Figure 8-1. This directory must have access permissions
set so that only the server principal can read or write to it.

Once a server establishes its login context, it is responsible for refreshing the context before it expires and
changing passwords before they can expire. The API for managing password expiration is
sec_key_mgmt_manage_key(). This function does not return and requires a dedicated thread.

The APIs for login refresh are:

sec_login_get_expiration()
sec_login_refresh_identity()
sec_key_mgmt_get_key()
sec_login_validate_identity()
sec_key_mgmt_free_key()
sec_login_certify_identity()

8.3.5.7.2 Authenticated RPC

A client program calls rpc_binding_set_auth_info() to specify how an authenticated RPC
connection will be set up. There are three important parameters that must be provided: authentication
service, authorization service, and the protection level. Developers should use the following settings for
these parameters:

Authentication Service. The default for DCE applications is dce_private, which uses private key
authentication. No other parameters are valid for DII DCE.

Authorization Service. An application can specify three possible values for the authorization
service: dce, name, and none. The value ‘dce’ means to pass a Privilege Attribute Certificate
(PAC). This is the setting that shall be used for all DII DCE segments.

Protection Level. DCE allows an application to specify just how much the data in an RPC should
be protected. These are: none, connect, call, packet, integrity, privacy. Integrity provides an
authenticated connection between parties and ensures that messages have not been tampered with

Runtime Environment

DII COE I&RTS: Rev 3.0 July 1997270

in transit. Privacy provides the highest level of protection for the RPC by encrypting the data using
Data Encryption Standard (DES). Although the SIPRNET is encrypted using Network Encryption
Standard (NES), the DES encrypting provides additional protection from packet snooping within a
site.

• DII-compliant applications shall specify at least integrity. The privacy level should be used for
particularly sensitive information.

8.3.5.7.3 Authorization

Once the client has been authenticated, the server must make an authorization decision. The RM is the
server code for retrieving the client’s PAC. The information from the PAC will be used by the RM to make
the authorization decision. While each server can implement its own RM, DCE packages RM code in its
library. The intent is for all servers to use this same library code. This will insure that access decisions are
made correctly and uniformly.

The ACL is a key part of the Authorization facility. Applications must be capable of establishing and
managing ACLs. DCE provides a set of APIs for using ACL managers (dce_acl_*).

8.3.5.7.4 Generic Security Service API

DCE provides a method for using DCE security without rewriting applications to use DCE RPC. DCE
contains extensions to the IETF RFC 1508 and 1509 GSSAPI that will allow current applications to use
DCE authentication and authorization. GSSAPI DCE extensions can be easily identified since all base
GSSAPI entry points start with gss_ while DCE GSSAPI extensions start with the prefix gssdce_. The
most important DCE GSSAPI extension is the gssdce_extract_cred_from_sec_context. This
call returns the Extended PAC (EPAC) which contains the security attributes of the original client and any
intermediate servers. The server uses the EPAC to make its authorization decisions. For more information
on the DCE Security Service and the GSSAPI, see the following:

1. The Security chapters of the OSF DCE Application Development Guide-Core Components Volume and
the OSF DCE Administration Guide-Core Components Volume (DCE Security Service only).

2. Reference pages (section 3) from the OSF DCE Application Development Reference.

3. Reference pages (sections 5 and 8) from the OSF DCE Command Reference.

4. Chapter 8, DCE Security Programming, Wei Hu, O’Reilly & Associates, 1995.

Note: The DCE Security Service and GSSAPI do not currently make
use of Fortezza authentication or encryption. Integration of
Fortezza with DCE is under investigation.

8.3.5.8 Auditing

DCE provides an enhanced audit facility consisting of the audit daemon, the dcecp control program, and
the audit logging client library. An audit daemon exists on every DCE system. Applications audit events by
sending RPCs to the audit daemon on the local system. The audit daemons write the audit records to the
audit log file, which stores all the event records so that they can be reviewed later. The audit daemon also
maintain event filters. Event filters are data structures that determine what events should be logged. Event
filters are stored in memory and in files called event selection list (ESL) files. In order to dynamically tailor
the audit process, the audit daemon exports an interface that allows the control program, dcecp, to change
the event filters and expand the range of events that should be audited.

Runtime Environment

DII COE I&RTS: Rev 3.0 July 1997 271

The final process of the audit facility is the audit-logging client library. This allows an application to send
audit records to the audit daemon. When an application makes a call to the library, the library checks to see
if the event should be audited. If the event filters determine it should not be audited, no RPC is sent to the
audit daemon.

This represents a simplistic view of how auditing takes place in DCE. More complex actions are actually
taking place including the dynamic updating of event selection lists. The most important point is that
applications need only work with the audit-logging API to audit events.

• DII DCE servers shall not write audit information to private audit files. The ‘central trail’ shall be used
to log all audit events.

A complete list of the DCE Audit API routines can be found in the OSF DCE Application Development
Reference, Volume 2.

An event is any action that takes place and is associated with a code point in the application server code.
Each event has a symbolic name as well as a 32-bit number assigned to it. Each event number is a tuple
made up of a set-id and the event-id. The set-id corresponds to a set of event numbers and is assigned by
OSF to an organization. The organization manages the issuance of the event ID numbers to generate an
event number. The structure and administration of event numbers can be likened to the structure and
administration of IP addresses.

The concept of events allows each DCE implementation to establish audit events for a wide variety of
actions that may take place within applications. DCE has established a hierarchy of formats for events.
Once again, these are similar to the class structure within the administration of IP addresses. As part of the
DCE implementation, DISA will request the assignment of a Format B event number. Format B is designed
to be used by intermediate-sized organizations that need the 8 to 16 bits for the event-id. This will provide
for the greatest flexibility and growth. Events may also be logically grouped together into an event class.
This is a case where it may be more efficient to refer to several events as a single entity/class. Event classes
are assigned event class numbers by the OSF. If required, event class number will be requested from the
OSF.

8.3.5.9 Threads

DCE automatically implements threads for server applications. The use of threads can be beneficial to
allow the server to service multiple clients concurrently. The number of active threads can be controlled by
max_calls_exec in rpc_server_listen(), which can be set to zero if the server software is not
“thread safe.”

While the use of threads is beneficial and recommended, the following cautions are provided:

• It is well known that threads can conflict with Ada tasking. Use threads with caution with Ada servers.

• Many COTS packages are also not “thread-safe.” Calls to databases, windowing systems, and other

routines should be done with caution from within a thread.

• Handling of fork/exec and signals is different when threads are used.

When using exceptions with threads, the application must explicitly include the dce/pthread_exc.h
header file.

Runtime Environment

DII COE I&RTS: Rev 3.0 July 1997272

8.3.5.10 Installation

In addition to installing software and data to system disk, server installation must also establish entries in
DCE CDS as discussed earlier.

• Application segment developers shall include dcecp installation/deinstall scripts in the segment
descriptor directory. The installation script will build the registration structure in CDS for each
interface as part of server installation. The scripts are named dce_install.dcp and
dce_deinstall.dcp. These scripts must contain conditional statements to ensure that some of the
entries, such as the SegDir container under /.:/h, are only created once for each cell. These scripts
are executed automatically by the segment installer tool during segment install/removal.

• It is recommended that there be a separate servicename.dcp script for each interface, to simplify
configuration and maintenance of server installation procedures. The primary dce_install.dcp
script must invoke each of the individual service scripts.

• DCE installation is normally performed by the root user logged in using the DCE cell_admin
identity. In order to reduce the exposure during installation, DCE applications will be installed in a
two-step process. During the first step, the minimal set of secure operations is performed. These
include:

1. Creating a DCE account using the principal segments/SegDir.

2. Creating a CDS directory /.:/h/SegDir.

3. Setting the ACL for /.:/h/SegDir to permit all functions for the principal

segments/SegDir.

4. Creating a security group group/segments/SegDir.

5. Setting the ACL for the security directory hosts/hostname to allow the

segments/SegDir to create principals below it.

6. Allowing segments/SegDir to create one account for each service implemented by the

segment (object creation quota).

Note: This first installation step is available as a standard utility in the
DII COE. It is parameterized based on a set of DCE-related
descriptors.

The second phase of DCE installation is performed by the segment-provided scripts
(dce_install.dcp, etc.) and is run using the account segments/SegDir. It completes the
installation process by performing the following for each service:

1. Create a DCE principal (once per cell), usually with the same name as the
hosts/hostname/servicename to be used by the server.

2. Create a binding profile for each service of the form

 /.:/h/SegDir/servicename_profile

 (once per cell) and add each server entry.

Runtime Environment

DII COE I&RTS: Rev 3.0 July 1997 273

3. Create a server leaf entry (once per instance)
 /.:/h/SegDir/hostname/servername.

4. Create server configuration entries (for each instance).

5. Create default ACLs for any server defined objects.

6. Create security entries for the segment under application and group.

Note: The entire installation process is automated based on information
in the segment descriptor files.

8.3.5.11 Server Exceptions

A DCE server must have proper cleanup code. Cleanup code is responsible for graceful shutdown and
includes unregistering with the runtime, removing the endpoint from the endpoint mapper, and killing any
security management threads.

• Servers wishing to honor a remote ‘stop’ request, must register an authorization function using
rpc_mgmt_set_authorization_fn(). This can be used to control other management
interfaces.

• Servers shall be prepared to catch signals and perform the necessary shutdown. This can be performed

by converting signals to thread cancellation and using a cleanup function
(pthread_cleanup_push) or using the exception facility to catch the pthread_cancel_e
condition.

comm_status, fault_status op(); /* in ACF file */
error_status_t op (args ...); /* in IDL file */

Alternatively, routines can return status by using the return code as follows:

op([comm_status, fault_status] st) /* in ACF file */

• All DII-compliant applications shall catch the SIGHUP and SIGTERM signals and perform a graceful
termination. By convention, SIGHUP means to terminate as soon as practical, and SIGTERM means to
terminate immediately.

Note: The initialization API is accompanied by a server termination
function so that every programmer does not need to write one.

8.3.5.12 Client-Side Libraries

When a server is being implemented as a reusable service, it is often desirable to develop a client-side
library of interface routines to isolate the client from the DCE interfaces. This is the model most often used
in commercial packages that provide a callable service. The client deals only with a well-defined call-level
interface, independent of the fact that operations are performed by a server. This also allows some library
procedures to be performed entirely at the client when there is no need to interact with the server.

• COE services may provide an API library separate from the IDL when that will improve the efficiency
or usability of the software. When a library is provided, it shall be delivered in the segment’s lib
directory. Unless authorized by the DII COE Chief Engineer, the library must be provided for all
supported COE hardware platforms.

Runtime Environment

DII COE I&RTS: Rev 3.0 July 1997274

8.3.6 Client Issues

This section provides guidance for client application developers to make use of DCE services to access
DCE servers.

8.3.6.1 Binding

Binding is the term DCE uses to refer to a client locating an appropriate server prior to performing an RPC.
This is another area where a DCE application writer has plenty of latitude. Binding encompasses issues
such as selection of transport protocol, selecting one or multiple servers based on load, location, or other
criteria. Ideally, the binding will be resilient and deal with servers dying, stale entries in CDS or endpoint
maps, automated remote server startup, and meeting server prerequisites. DCE also supports three methods
for binding which affect the way applications are developed (automatic, explicit, implicit).

• It is recommended that applications use the explicit binding method since it is the most flexible. In
cases where preserving the API does not permit the use of automatic binding for the client, this does
not preclude a server’s use of explicit binding. Servers should always use explicit binding so they can
obtain client identity and/or client objects.

• One precaution in using explicit binding is that the client is responsible for obtaining another binding
should the initial handle fail (i.e. the first server is unavailable). This feature is provided automatically
by the runtime when automatic_binding is used.

• Automatic binding does not naturally allow for secure binding or for passing an object reference for
use in object binding. When using automatic binding, use the binding_callout ACF attribute to
annotate the binding for security or object purposes. This will register a call-back routine, to be
supplied by the client, that can fill in security and object information. Refer to the OSF DCE
Developers Guide - Core Components.

Note: The DII COE provides a standard API that clients can use to
obtain a binding handle. This simplifies writing client
applications and permits the features described above to be
implemented as needed.

There are two different binding models available within DCE. In the service model, any implementation of
a service is assumed to be able to handle any request. This is appropriate for general purpose services such
as math routines. The alternative is the resource or object model, in which servers also identify specific
objects for which service is provided. Clients then identify both a service and an object, and DCE will bind
to a server that satisfies both requirements. For example, an OPLAN database could identify the OPLANs
that it contains, or a map server could identify the maps it can provide. A client could then request
“Connect me to a map server that has a map of Bosnia.” Different objects could also be used to distinguish
between test and “live” versions of a database. The object model can also be used to identify a “role” being
supported by a server. For example, the client could request “Connect me to a server that is supporting the
‘observer’ role.” The object model is a little more complex, but provides much greater capability.

• DII COE client/server applications should use the resource model for binding. For the simple case
where there is currently no distinction among implementations, each server should register an object
corresponding to the server, and the clients should request this object. This establishes the structure for
greater flexibility later. It also establishes an object-oriented flavor to interfaces that may ease
transition to the use of object request broker technology in the future.

• DII COE client applications need some means of determining the UUIDs of these objects. There are
two choices: define the object UUID values in ‘header’ files, or use CDS as an object catalog. Object
entries in CDS shall be placed under the /.:/h/SegDir/objects directory or under another

Runtime Environment

DII COE I&RTS: Rev 3.0 July 1997 275

subdirectory under objects (i.e., objects/Maps). Groups can be used to collect these objects (for
example, groups/Maps may refer to object entries objects/Bosnia and objects/Iraq).

8.3.6.2 Exceptions

Exceptions are a means of handling failure conditions which occur during program execution. DCE
implements exceptions locally and remotely as a result of an exception occurring during execution on a
server. Using exceptions requires the use of a potentially new programming style. DCE uses exceptions
internally as a means of conveying the failure status of RPC communications-related failures. The default
handling of an exception is a program abort which is not desirable. The choices for an application
developer are as follows:

1. Use exceptions by including dce/pthread_exc.h and defining TRY/ENTRY blocks around code
that may raise an exception.

2. Attempt to avoid exceptions by using the comm_status and fault_status attributes in an ACF

file. To this end, new RPC operations should reserve use of the last parameter in each RPC as a means
of conveying error status by doing the following:

void op (args..., error_status_t *st); /* in IDL file */

• DII applications shall make provisions for handling exceptions using one or the other of these methods.
The latter method is recommended because of its language independence, but either method is
acceptable.

8.3.6.3 Security

In DCE, the client is responsible for selecting the security protocol and level, whereas the server maintains
the choice of accepting the client’s request or rejecting it. The API rpc_binding_set_auth_info()
is used to specify the client selections. The default protection level is
rpc_c_protect_level_default. The default authentication service is rpc_c_authn_default.
The default authorization service is rpc_c_authz_dce.

• DII COE clients shall use the DCE authorization protocol along with packet integrity. Applications
requiring additional security should justify and identify those requirements appropriately.

In order for a client to initiate a secure transaction with a server, the client must know the server’s principal
name. This information along with the security level is placed in the binding handle. In the absence of a
standard binding interface, the client can obtain the server’s principal name using
rpc_mgmt_inq_server_princ_name or can query the configuration record on the host whose
binding was obtained from CDS.

Note: The latter is performed automatically by the COE supplied
binding API.

8.3.6.4 Auditing

There is no difference between auditing in a client and in a server. However, auditing is almost always
performed in a server rather than in a client. Auditing can be performed by non-DCE applications, but the
user or application must perform a DCE login in order to obtain DCE identification information that is
inserted in the audit records. See subsection 8.3.5.8 for a discussion of auditing.

Runtime Environment

DII COE I&RTS: Rev 3.0 July 1997276

8.3.6.5 Threads

While threads are not automatically enabled for DCE clients, the DCE pthreads package is available for use
by DCE clients. The cautions mentioned under server issues apply to clients. Client application developers
should read more about the implications before using threads, particularly with Ada applications. Vendor
release notes should be consulted when using threads. Vendors may require the use of special compile flags
such as -D_REENTRANT or _THREAD_SAFE_ and may need to be linked with vendor-specific libraries.

8.3.7 Miscellaneous Information and Requirements

This final subsection provides some remaining details for properly using DCE within the context of the DII
COE.

• The COE establishes the CELL environment variable to contain the current cell name.

• UNIX userids shall agree one-for-one with DCE principals.

• Each UNIX group used with a DCE application shall have a matching DCE group, but not all DCE

groups must have a matching UNIX group.

• Account groups do not have a useful analog in DCE, although organizations or groups could fill this

function.

• UNIX file permissions are similar to DCE ACLs, although ACLs are much more flexible.

Distributed File System

DII COE I&RTS: Rev 3.0 July 1997 277

8.4 Distributed File System

DFS offers some unique characteristics as a remote file service product. Some of these capabilities are
often replicated by individual applications. Using DFS can provide significant benefits to applications that
need to provide coherent file access to a very large community. Using DFS, all sites have access to a single
logical file space. In GCCS 3.0 this access is provided by a NFS-to-DFS gateway machine located at each
of the GCCS sites. DFS also provides a built-in replication mechanism that can be used to provide rapid file
access and high availability. It is fully integrated within DCE and uses secure DCE-RPC as well as DCE’s
fine-grained access control mechanisms.

Note: This section uses GCCS as an example and the guidance given is
specific to the GCCS global cell. However it is also of interest to
other DII developers since the techniques applied to GCCS could
also be implemented for other areas.

The DFS provides a transparent, secure global file system. DFS has enormous potential for sharing files
within and among sites. DFS will be installed within a global cell that has machines at four sites world-
wide (DISA, US Transportation Command [TRANSCOM], US European Command [EUCOM], and US
Pacific Command [PACOM]). This cell will provide secure, global visibility to current information using
automatic replication. All GCCS sites will share files by access to a file server within this cell. Initially,
DFS will be used for a limited number of files, but the usage will grow as experience is gained.

DFS provides the following features:

1. Client-side caching: DFS is a file service which maintains information about a client and the client’s
state. Servers are knowledgeable about clients, files in use, and network copies. This allows clients to
maintain full disk-based copies of server files to achieve performance rivaling that of local disks. This
is accomplished using a token passing scheme. The NFS-to-DFS gateway machines will be configured
with large disk caches (dedicated storage) for caching of remote files. The probability of finding
cached data within each site, or at least within the theater, will be high and so reduce network-induced
delays.

2. Transparency (POSIX semantics): DFS supports nearly complete POSIX semantics for file system

access. This guarantees consistency of file access to non-replicated files across all DFS clients. For
files that are not replicated, DFS will ensure that any file changes are immediately visible to other
users of the file. Other systems with stateless implementations have far weaker semantics due to the
possibility of having multiple copies in client buffers.

3. Replication: DFS divides file systems into smaller hierarchies called filesets. DFS can create replicated

read-only filesets of a given master writeable copy. Replication provides load balancing and additional
availability. A flexible scheme exists for keeping the master and read-only copies in synchronization
within selectable time intervals. All reads from the writeable fileset immediately see any changes,
while reads from a read-only replica see the change after some delay, usually about 30 minutes
depending upon the scheduled replication interval. These consistency controls allow a trade-off
between performance and coherence. In general, replication is only used for files that change
infrequently.

 Note that “immediately visible” is from the perspective of the NFS-to-DFS gateway. Because clients access

the gateway using NFS, the NFS consistency semantics apply, and updates may not be immediately
seen by the clients.

4. Backup filesets (cloning): DFS provides the ability to create a backup of a fileset and to make this

backup available online as a read-only copy. The backup is accomplished using an efficient system of
file pointers, so that only files changed after the backup take up additional space in the file system. The

Distributed File System

DII COE I&RTS: Rev 3.0 July 1997278

use of backup can allow users to recover overwritten or deleted files without administrative help and
without doubling file space requirements.

5. Use of DCE security: DFS uses DCE security to provide authenticated access and ACLs for granular

access. DFS ACLs are based on DCE ACLs, but implement a specific security model that is much
more flexible than UNIX file permission bits. ACLs can specify the access privileges afforded to
specific users, any local user, users in specific named security groups, users from a specific cell, users
from any external cell, any authenticated user, and non-authenticated users.

6. Initial ACLs: In addition to specifying ACLs for files and directories, DCE also allows a separate set of

“Initial ACLs” to be attached to a directory. These specify the ACLs that will be applied to any new
file created within the directory. In addition, “Initial Container ACLs” can be specified to identify the
ACLs for any new directories. Among other things, these can be used to allow users to create new files
and directories without allowing them to subvert the ACLs on the directory (e.g., granting public
access to files in a sensitive directory).

7. Delegation: DFS also supports delegation of DCE credentials, which can be used to protect not only

who can access a file, but also specify the means of access. For example, ACLs can permit user john
to access the GEOLOC file through the GEOLOC server but prevent john from accessing the file
without using the server, and can prevent another user from accessing the file even if they use the
GEOLOC server.

8. Administration: DFS supports advanced administrative functions such as hot backup, moving live

filesets between machines, quota controls, transactional file system, dynamic re-sizing of file systems
and the ability to control groups of files in filesets rather than in file system units.

9. Location independence/consistency of naming: All DFS files are accessed by consistent names that do

not contain any location information. For GCCS, a file could be in any of the global cell file servers, or
replicated in multiple servers. Although GCCS will use a single DFS cell, in general DFS uses CDS to
access file systems that can easily span cell boundaries. Every client system has the same file system
view regardless of the cell to which they belong.

10. Wide-area access: DFS is built on top of DCE RPC that can use TCP, UDP or other protocols.

Because of its efficiency, circuits of 56Kbps are adequate to provide wide-area access to DFS servers.

8.4.1 DFS Structure

In general, the DFS file system is a hierarchical structure starting at the /... CDS directory. Files in any
cell can be addressed just by referencing the DFS filename. The structure of a DFS filename is
/.../cellname/fs/filesystem. An example of a system’s DFS directory is
/.../gccs.smil.mil/fs/usr/JOPES. The logical naming of files does not require that the files
reside in a specific server. The physical representation may have files in another location or perhaps
replicated across several file servers. As a convenience, a symbolic link /:/ is made to represent the files
within the current cell.

Note: In GCCS 3.0, it is anticipated that there will only be a single
global cell containing the DFS file space.

One of the primary purposes of DFS is controlled sharing of information. In the C3I environment,
information sharing occurs in at least three different dimensions: within an organizational structure (e.g.,
across a single service or agency); within the unified command structure (e.g., among a CINC, JTF, and
supporting commands); and within functional groups (e.g., among operations watchteams at all sites). All
of these can be done using DCE security groups. Group ACLs may be attached to any file within a file

Distributed File System

DII COE I&RTS: Rev 3.0 July 1997 279

structure, but it is most easily understood and administered if the sharing requirements are explicit in the
structure. For the GCCS DFS, the file system is organized around these sharing dimensions.

8.4.2 DFS Guidance

DFS should be used for files that meet one of more of the following criteria:

1. Files that are read-mostly (i.e., are read many more times than they are written).
2. Files that require high availability.

• For files that change frequently, there is a tradeoff between currency and the overhead of replication.
Changes to non-replicated files are visible immediately, while changes to a replicated file may not be
visible for a period of time. The replication update rate can be set by fileset, but a long interval
between replication can increase the chances of accessing a stale copy.

• Files that are site-specific must be placed in site-specific directories in DFS. Be cautious when
mapping an application data directory into a shared data directory if the application has any hard-coded
file names. It is possible for one site to write the file and unintentionally change the values for all sites.

• For GCCS, DFS files will initially be mapped into the local NFS file system on /GCCS. All client

machines will mount /... from the NFS-to-DFS gateway machine. /GCCS will be a symbolic link to
/.../gccs.smil/fs.

• If application-specific directories are used in DFS, the segment installation procedures shall create the

directories. Note that the full directory names are site-specific.

• Use symbolic links to map DFS files or directories into the proper place in the local file system. All

mapping shall be done at a directory level. System developers are also responsible for constructing
symbolic links from the local file system to the global DFS in their installation procedures.

• Do not create a symbolic link from /.:/gccs.smil.mil/fs/ to /:/, and do not use the notation

/:/ within DFS references. This notation refers to the DFS within the current cell. Since all GCCS
applications operate outside the global cell, this would create an ambiguous reference if the site
implements DFS internally in the future.

• Do not place RDBMS databases into DFS. The DFS file consistency and caching methods do not

support the level of sharing required by an RDBMS. It is possible to back up databases into DFS for
re-loading somewhere else.

• GCCS application servers, or even clients, may become DFS clients and access the global cell directly.

Bypassing the NFS-to-DFS gateway may result in better performance due to local caching and better
consistency semantics through avoiding NFS.

8.4.3 Potential Uses for DFS

Global DFS cells can be used in a variety of ways to assist operators and developers, including the
following:

1. Data distribution: Many sites are using ftp as a means of obtaining remote files. The transparency of
NFS or DFS is much more powerful than ftp. NFS is not well suited for wide-area access and has
serious security issues when used across sites. The originator can simply write the data into DFS using
any software, and the user can immediately read it using the appropriate application. If the originator
changes the file, the other users can almost immediately see the change.

Distributed File System

DII COE I&RTS: Rev 3.0 July 1997280

2. Reference files: Applications frequently use reference files for maintaining information such as maps,
inventory, or flat-file databases. These files are updated by a few sites and are made available to other
sites using primitive distribution techniques. DFS also has the ability to use ‘cloning’ whereby a virtual
copy of a file is kept, but with a fraction of the storage costs. Using this feature, the global file system
could make available old and new copies trivially.

3. Secure files: Files containing security sensitive information should not be kept in NFS file systems.

DFS is a secure alternative to NFS. Using DFS, files can be distributed and controlled at whatever
degree is necessary.

4. Mobile Personnel: Operators who travel regularly to remote sites are probably using non-secure means

(i.e., telnet) to access files such as e-mail, data files (phone lists) or documents. Both telnet and
ftp can provide access control, but in both cases the user's password is sent unencrypted across the
network. DCE provides more flexible security and the password is never exposed on the network. By
storing these files in DFS, they can be securely accessed remotely.

5. DCE configuration information: Information about site configuration such as its DCE configuration

can easily be stored in DFS. Cell backups (critical DCE databases and configuration files) can be done
remotely by writing into a global file system.

Development Environment

DII COE I&RTS: Rev 3.0 July 1997 1

8.5 Migration Recommendations

Applications must be programmed to use DCE before the application can fully benefit from the power of
DCE. It is assumed that the movement to DCE among applications will be gradual. Although not all
applications will be re-engineered to use DCE RPCs immediately, they can still take advantage of other
DCE services using techniques described in this section.

The next subsections describe four scenarios and identify ways in which DCE services can be used in each
case. The example cases are not mutually exclusive in that an application may take advantage of several of
them. The first two cases are specifically targeted at legacy applications, while the last two may be used by
legacy or newly developed distributed applications.

8.5.1 Case1: Application Startup

A typical application startup scenario in the DII starts with the client workstation displaying a user desktop.
The user selects an icon or menu entry, which causes a “button script” to be executed to start a DII
application. The application may be local or remote. The desktop ensures that the user is authorized to
select the icon or menu item. In the case of an application on a remote application server, the script uses a
UNIX command such as rsh or rexec to start the remote server. The server application then opens a
window on the client workstation and begins a dialog with the user.

The rsh command requires a level of mutual trust between the application server and the client. It is
possible for malicious clients to masquerade as authorized users and run applications for which they are not
authorized. This is particularly a problem for legacy applications that run under a distinguished uid, such as
JOPES (i.e., not the user’s id). Use of a simple DCE wrapper can ensure the user is authorized using strong
DCE protection.

Through the use of a transparent DCE wrapper, the startup of DII applications can be fully protected using
strong DCE authentication and access controls. Instead of invoking a user application, a button-script will
invoke the wrapper and pass the name of the user application and any parameters. The wrapper will verify
that the user is authorized to use the application, then launch the application. The application receives
control just as if the script had launched it directly, so no application changes are required. In addition to
performing authentication, the wrapper can audit execution of applications.

The wrapper can be used to launch applications on the client machine or on a remote machine. In the case
of a remote application, the wrapper will operate much like the UNIX rexec or rsh, but will use
authenticated DCE RPC to communicate to a remote wrapper server and will use the DCE ACL model.
The remote wrapper will authenticate the user, verify that the user is authorized, then set up the application
environment before launching the application. Unlike rexec or rsh, the button script does not need to
specify the machine that contains the application. By proper use of the CDS binding information, the
wrapper can make a request such as “connect me to a wrapper server on a machine that has the JOPES
application.”

The wrapper approach has the advantage of allowing full security over execution of DII applications
without having to make changes to any applications.

• This temporary approach is permissible only as an interim step for legacy applications as they migrate
to DCE. New distributed applications shall be designed as two and three-tier client/server applications
making use of RPC. New COE-component segments shall not use this approach without prior approval
of the DII COE Chief Engineer. Mission-application developers shall not use this approach without
prior approval from the cognizant DOD Chief Engineer.

Development Environment

DII COE I&RTS: Rev 3.0 July 19972

8.5.2 Case 2: Socket/ONC RPC

Some applications are distributed and use sockets or unsecured ONC RPC to exchange control and data.
Some socket applications perform highly sensitive operations, but essentially accept any request presented
to the designated endpoint. Even without converting to full DCE RPC, these applications can make use of
strong DCE authentication and access control. Socket-based communication is also susceptible to packet
insertion attacks.

Existing applications that use sockets or RPC and desire greater security should seriously consider
migrating to use of DCE RPC. In many cases the effort to convert to authenticated DCE RPC is not great.
However, even if only limited application changes can be made, the use of DCE security is possible using
the new GSSAPI. With the GSSAPI, the client application obtains a user credential, which is passed to the
server application. The server verifies the user credential through another call to the GSSAPI.

The simplest use of the GSSAPI will get the credential once and pass it only in the first message. This
provides some measure of security, but not as much as passing the credential in every interchange.
However the latter requires more widespread changes to the application. It also requires the application to
periodically refresh the credential before it expires.

The following sequence of calls illustrates the use of GSSAPI:

1. Client calls gss_init_sec_context to obtain a security token to pass to the server.

2. Client passes token to the server across the revised socket or RPC.

3. Server receives token and calls gss_accept_sec_context to decode the token, then gets a copy

of the session key.

If the credential is valid, the server can convert the token (session key) to a DCE client/server, which is
used as the subject in the access control decision; otherwise, it rejects the request. The use of GSSAPI is
discussed further in subsection 8.3.5.7, Security.

• This temporary approach is permissible only as an interim step for legacy applications as they migrate
to DCE. New COE-component segments shall not use this approach without prior approval of the DII
COE Chief Engineer. Mission-application developers shall not use this approach without prior
approval from the cognizant DOD Chief Engineer.

8.5.3 Case 3: Distributed Databases

Perhaps the greatest potential use of distributed computing in the DII is for distributed databases, using
products such as Oracle SQL*NET. This provides some security, but requires duplicate identification of
people and resources, increasing administration. It is possible to integrate database security and remote
access control with DCE security using COTS.

At least two COTS alternatives have potential for providing DCE security to remote database connections
currently using Oracle SQL*NET. The first is to use the SQL*NET DCE product as provided by Oracle.
This product provides an Oracle integration of CDS and Security into existing applications and servers. The
Oracle database uses the client’s DCE credentials for access decisions, alleviating the need for a separate
Oracle login. The product also maps DCE groups to database roles, unifying another aspect of security. The
ability to map a DCE security group membership into an Oracle role will not be available until the next
release. Database servers register in CDS and clients use CDS to locate a database server. Unfortunately,
this product is not currently available for all COE platforms.

A second approach is to use Open Horizon’s Connection product as a means of integrating existing Oracle
database clients and servers. It uses essentially the same approach as SQL*NET DCE, and product

Development Environment

DII COE I&RTS: Rev 3.0 July 1997 3

availability is immediate. It supports applications using OCI. In addition, this product supports the de facto
standard Open Database Connectivity (ODBC) remote database connection protocol, allowing access to a
large number of other databases and products. Its major disadvantage is that it cannot provide DCE group
to Oracle role mapping. It requires that privileged database access be granted to the Connection server. It
cannot currently be used with applications that use ProC or ProAda embedded SQL, since these use
undocumented interfaces, instead of standard OCI.

Note: There are no facilities to directly support either approach in the
DII COE. Tools such as Connection are under consideration for
later COE releases. Developers may make use of these tools with
the COE if required. This subsection is provided only to describe
a potential migration approach.

8.5.4 Case 4: Distributed Files

Perhaps the easiest way to use the security features of DCE is through use of DFS. For example, the GCCS
Global DFS will allow the use of DCE access control, authentication, replication, and consistency controls,
with little or no application impact. It reduces requirements for user-initiated FTP and polling.

DFS offers some unique characteristics as a remote file service product. Some of these capabilities are
often replicated by individual applications. Using DFS would be a significant benefit to applications that
need to provide coherent file access to a very large community. DFS also provides a built-in replication
mechanism that can be used for software distribution. It is fully integrated within DCE and uses secure
DCE-RPC as well as DCE’s fine-grained access control mechanisms. GCCS will use DFS to allow all
GCCS sites to have access to a single logical file space. In later versions of GCCS, this access will be
provided by an NFS-to-DFS gateway machine located in each of the theaters.

The DFS provides a transparent, secure global file system. DFS has enormous potential for sharing files
within and between sites. DFS will be installed to support GCCS within a global cell that has machines at
four sites world-wide (DISA, TRANSCOM, EUCOM, and PACOM). This cell will provide secure, global
visibility to current information using automatic replication. All GCCS sites will share files by access to a
file server within this cell. Initially, DFS will be used for a limited number of files, but the usage will grow
as experience is gained.

• Developers planning to use DFS or anticipating a need for DFS for COE-component segments shall
contact the DII COE Chief Engineer for more detailed information and guidance. Mission-application
developers shall contact the cognizant DOD Chief Engineer to ensure that such usage does not
interfere with the COE, or with other COE-based systems.

Development Environment

DII COE I&RTS: Rev 3.0 July 19974

This page is intentionally blank.

9. Development Environment

The DII COE imposes very few requirements on the process or tools developers use to design and
implement software. The COE concentrates on the end product and how it will integrate in with the overall
system. This approach provides the flexibility to allow developers to conform to their internal development
process requirements. However, developers are expected to use good software engineering practices and
development tools to ensure robust products. The purpose of this chapter is to suggest certain development
practices that will reduce integration problems, and the impact of one segment on another.

Developers may select compilers, debuggers, linkers, editors, Computer-Aided Systems Engineering
(CASE) tools, etc. that are most suitable for their development environment. The compilers and linkers
selected must be compatible with the products supplied by the hardware vendors and must not require any
special products for other developers to acquire in order to use the segments produced.

Coding Conventions

DII COE I&RTS: Rev 3.0 July 1997 5

9.1 Coding Conventions

This section describes required coding standards for segments submitted to DISA, whether they are COE-
component segments or mission-application segments that are part of a DISA COE-based system. These
standards are not intended to restrict software development, and for that reason the requirements given are
brief.

There are two important points to keep in mind with respect to this chapter. First, the DII COE states
requirements for the purpose of ensuring and preserving the integrity of the runtime environment.
Therefore, the DII COE is mostly concerned with executables that are produced and not the process used to
create them. The COE relies upon other standards (e.g., MIL-STD 2167A, MIL-STD 495, ISO 9000) and
practices levied by the cognizant DOD program managers to ensure good programming practices and a
quality product. However, certain standards are required because some of the segments produced contain
APIs that developers will use to build other segments upon.

Secondly, the DII COE is neutral with respect to programming languages and does not stipulate what
programming language to use to write segments. Such decisions are the prerogative of the cognizant DOD
program manager. The COE must support segments written in Ada, in support of DOD policy, and C,
because of the use of COTS products, and therefore both are addressed in this chapter. Any statements in
this chapter, or elsewhere in the I&RTS, which appear to state a preference for one language over another
are unintentional.

Because most developers are using either C/C++ or Ada, COE-component segments that provide APIs
shall be written in either C/C++ or Ada. Availability of APIs for both C and Ada is highly desirable, but
will be driven by service and agency requirements. Consult the DII COE Chief Engineer for availability of
multi-language APIs, for requirements to produce multi-language APIs for a particular segment, or for
support for languages other than C/C++ and Ada.

9.1.1 Language-Independent Conventions

The following suggestions and requirements are language independent.

• Code delivered to DISA shall not be compiled with debug options enabled. If available, a utility such
as the UNIX strip command shall be run on executables to minimize the disk space required.

• Segments should use shared libraries where practical to reduce runtime memory requirements.

Segments with public APIs implemented as shared libraries shall also be delivered as static libraries to
make debugging easier for developers who need to use the APIs.

• Developers may use GUI tools to build interfaces, but developer’s should select tools that are portable

across platforms. Segments built with such tools shall use resource files for window behavior rather
than embedded code, and must not require any runtime licenses unless approved by the DII COE Chief
Engineer for COE segments or by the cognizant DOD program manager for application segments.

• Developers should run all modules through a tool such as lint to detect potential coding errors prior

to compiling.

• Developers should run all modules through commercially available tools to detect as many runtime

errors as possible (e.g., “memory leaks”).

• Developers should periodically profile segments by using tools that do a runtime analysis of module

performance (% CPU utilization, number of times a function is invoked, amount of time spent in a
function, LAN loading analysis, etc.).

Coding Conventions

DII COE I&RTS: Rev 3.0 July 19976

• Developers should create a test suite for automatically exercising the segment, especially inter-segment
interfaces and APIs, and periodically run the tests to perform regression testing. A formal test plan
should be created and submitted with the segment.

• Segments with public APIs shall be delivered with a test suite that covers all public APIs provided by

the segment.

• Developers should use a tool such as imake for generating makefiles that are as portable as

possible. If available, the POSIX.2 make utility should be used.

• Developers should use automated tools such as CVS, RCS, or other commercially available products to

perform configuration management tasks. Segment developers are responsible for configuration
control of their own products. The I&RTS does not prescribe a CM plan, but assumes the developer has
one as part of good programming practices.

• Developers should periodically rebuild segments from scratch to ensure that all pieces, including data

files, are under proper configuration management control.

• Developers should track problem reports in an automated database. This will simplify reporting known
problems when the segment is submitted to the cognizant DOD SSA.

• Developers shall separate COTS products from mission-application software because the COTS
software may already be available in the DII COE inventory.

9.1.2 Ada

Ada generally requires stipulating fewer requirements than other languages because the syntax and
semantics of the language are designed to enforce good programming practices at the compiler level. For
example, Ada enforces strong typing so that many common coding errors are caught at compile time.

Ada bindings in particular pose specific areas of concern.

• Developers should design software so that routines that require binding to other languages are isolated
into a small number of easily separated modules. This will make maintenance of Ada bindings easier,
and make it easier to identify segments that require long-term support for Ada bindings.

• Developers who create Ada bindings to other segments or COTS products within the COE should

submit them with their segment so that other developers may reuse them.

• Developers who require Ada bindings to COTS products within the COE (e.g., Motif, DCE) should

use commercially available bindings whenever they exist, and whenever it is economically feasible to
do so. Products are available which largely automate the process of creating Ada bindings from C
header files.

• Developers shall separate submission of their segment and any bindings they create. The segment will

be delivered to operational sites while the bindings will be distributed only to other developers.

• Developers should use Ada95 as the language of choice over earlier versions of Ada.

9.1.3 C/C++

This subsection contains requirements and suggestions that are specific to programming in C or C++.

Coding Conventions

DII COE I&RTS: Rev 3.0 July 1997 7

• Developers should use American National Standards Institute (ANSI) C instead of Kernighan and
Ritchie C because of the strong typing capabilities of ANSI C.

• Segments that have public APIs written in C shall support ANSI C function prototypes.

• Segments that have public APIs shall support linking with C++ modules. This is done by bracketing
function definitions with

#ifdef __cplusplus
extern "C" {
#endif

function prototypes

#ifdef _cplusplus
}
#endif

• Segments written in C that have public APIs shall handle the condition where a header file is included
twice. This is accomplished by bracketing the header file with #ifndef and #endif as follows:

#ifndef MYHEADER
#define MYHEADER

header file declarations

#endif

Development Directory Structure

DII COE I&RTS: Rev 3.0 July 19978

9.2 Development Directory Structure

Developers may use whatever directory structure is most appropriate for their development process. The
installation tools will enforce the logical structure presented in Chapter 5. However, the COE development
tools allow segments under development to be located arbitrarily on the disk. For example,

VerifySeg -p /home5/test/dev MySeg

indicates that the segment to be validated, MySeg, is located in the directory /home5/test/dev.
Similarly,

TestInstall -p /home5/test/dev MySeg

allows the segment to be temporarily installed from this directory for testing and debugging.

Figure 9-1 shows an example segment directory structure. It has the advantage that it separates public and
private code into different subdirectories. MySeg/lib contains public libraries provided by the segment,
while MySeg/include contains public header (C/C++) or package definition (Ada) files The
src/PrivLib subdirectory should contain library modules that are private to the segment. Similarly, the
subdirectory src/PrivInclude contains interface files that are private to the segment.

PrivInclude PrivLib ...

MySeg

Scripts SegDescrip data bin src include lib

Figure 9-1: Example Development Directory Structure

This directory structure is not mandatory, except when source code is delivered to DISA; otherwise, it
represents only one recommended approach. When source code is delivered to DISA, is shall be in the
src, include, and lib directories as appropriate.

An advantage of structuring directories as shown in Figure 9-1 is that delivering software to other
developers means that only one directory must be deleted: the src directory. Delivering the software to an
operational site means that only three directories need to be deleted: include, lib (unless shared
libraries are being used), and src. It is a simple matter to create automated scripts that can generate tapes
for both types of deliveries. An additional benefit is that public and private files are separated in the
directory structure for easier management and distribution.

Separating Out the Development Environment

DII COE I&RTS: Rev 3.0 July 1997 9

9.3 Separating Out the Development Environment

The COE requires that a strict separation be maintained between the runtime environment and the
development environment. This is true regardless of the target platform operating system (e.g., NT, UNIX).
For the NT60 world, most development tools are structured in such a way that the development environment
is self-contained in an integrated environment that is accessible from a GUI. For example, both Microsoft
and Borland provide an integrated development environment for C++ that provides icon and menu access
to compilers, linkers, editors, and other development tools. Both products provide a “directory browser” for
identifying the location of source code and libraries, and the target directory for object code and
executables. Moreover, they provide an interface for defining parameters such as compiler flags and
preserve the settings and all other build-related information in a “project file.”

For UNIX, however, integrated development environments are less common place. The next subsection
describes an approach for preserving the separation of development and runtime UNIX environments
through the use of scripts. The concept is to put all runtime information into one script, and all development
information in a separate script. While the approach between NT and UNIX is considerably different, the
COE stipulates a fundamental requirement to preserve a separation between the runtime and development
environment. Developers shall preserve this separation regardless of the target operating system
environment.

9.3.1 UNIX Development Scripts

In the UNIX environment, it is often convenient to locate development scripts in the same subdirectory as
the runtime scripts (e.g., subdirectory Scripts). The recommended convention is to name development
scripts with a .dev extension to distinguish them from runtime environment scripts. The .runtime
extension can not be used since this has a special meaning within the COE as explained in Chapter 5.

Developers may define environment variables for locating source code directories, compilers, tools, and
libraries. In addition, aliases can be defined as shortcuts for frequently executed commands. None of these
examples are allowed in the runtime environment and hence must be placed in a development script such as
.cshrc.dev.

9.3.2 NT61 and UNIX Recommendations

The following suggestions are made:

• Define environment variables relative to segprefix_HOME where segprefix is the segment prefix.
This allows segments to be easily relocated on the disk. (This suggestion is applicable to both UNIX
and NT.)

• Use environment variables to define where to place libraries and executables. (UNIX only. For NT, use

facilities provided by the development tools for locating libraries and executables.)

• Extend the path environment variable through concatenation - that is

set path = ($path $TOOLS)

60 The DII COE for NT is presently available only on PC platforms. Comments in this chapter should be
understood in the context of Windows NT for PC-based platforms, even though the NT operating system is
available on other commercial platforms. DII COE support for non-PC platforms is dependent upon
requirements from the DII COE community.
61 ibid.

Separating Out the Development Environment

DII COE I&RTS: Rev 3.0 July 199710

where $TOOLS is the location of the COE development tools (e.g., /h/TOOLS). (UNIX only. For NT,
use facilities provided by the development tools for locating tools.)

• Use the same script for all supported platforms through use of the environment variables
MACHINE_CPU and MACHINE_OS. (UNIX only. For NT, use facilities provided by the development
tools for creating project files that allow multi-platform development support.)

9.3.3 Test Account Group

COE-component segment developers typically create servers that will be used by other segments in the
operational system. However, the developers and the SSA need to be able to test the COE-component
segments when there may not be available any mission-application segments, or even an account group
segment, that will launch the servers and exercise the API interfaces.

To aid the SSA and other segment developers, it is recommended that COE-component segment developers
create and deliver with the segment the following:

• A test account group segment. This segment should establish the environment that the COE segment
is expected to run within and contain details for how to correctly launch the services. This provides a
way for the SSA to test the delivered segments and it provides system engineers and designers an
example of how the segment was intended to be used.

• A “Run” script . Chapter 5 indicates that account group segments must contain an executable that will

launch the application. The test segment should also contain such an executable. This encapsulates in
one place the information required to properly establish the runtime environment to launch the server
and it also identifies the sequence and command-line parameters, if any, required to launch the
services.

• Documentation. The test segment and “Run” script should be documented to assist the system

integrator, potential system designers, and the SSA.

The test segment and “Run” script should be packaged and delivered separately from the actual COE-
component segment. This will ensure that the test segment does not inadvertently get delivered to an
operational site, or get confused with account group segments that are intended to be part of the end
system.

Private and Public Files

DII COE I&RTS: Rev 3.0 July 1997 11

9.4 Private and Public Files

The software engineering principles of data abstraction and data hiding are important in designing
segments. Data abstraction refers to the process of abstracting structures so that subscriber segments need
not know low-level details of how data is physically organized. Data hiding refers to hiding data elements
that subscriber segments do not need or are not authorized to access directly. Proper implementation of
these two design principles prevents segments from affecting each other through inadvertent side effects
and isolates one segment from changes in another.

It is also important to hide low-level functions and only provide access to segment functionality through a
carefully controlled interface, the API. It is neither feasible nor desirable to make all functions in a segment
available due to the sheer number of functions involved and because changing a function that is being used
directly by another developer may have significant impact.

These concepts are implemented in Ada through the package construct. C, however, does not contain an
equivalent capability. The closest approximation in C is the static directive that makes a function visible
only within the scope of the file containing the function definition. To compensate for structural
inadequacies in C, developers must segregate software into public and private files, and into public and
private directories. Since header files (e.g., .h files) are used to define the interface to C functions, the
concept is that header files should be segregated into public and private files while public and private
directories are used to provide the same concept for libraries. Moreover, segregation into distinct
directories makes it easier to enforce the separation.

COE Online Services

DII COE I&RTS: Rev 3.0 July 199712

9.5 Developer’s Toolkit

The Developer’s Toolkit contains the components necessary for creating segments that use COE
components. The toolkit does not need to be in segment format (it is not installed at operational sites), but it
is a set of files and directories that may be downloaded electronically from the online library. Developer’s
may also contact the DII COE Configuration Management Department to receive the toolkit on magnetic
media in relative “tar” format.

The Developer’s Toolkit is distributed separately from the target COE-based system. However,
components from the operational system (COE-component segments, shared libraries, etc.) are required for
development. These may be obtained electronically from the online library, or on magnetic media from the
DII COE Configuration Management Department. Classified or very large components will be distributed
to developers via magnetic media. The toolkit does not duplicate any components available in the runtime
system because this would create configuration management problems in ensuring that developers do not
receive two different versions of the same module.

As distributed, the toolkit contains the following:

• API libraries and object code
• C header files for public APIs written in C
• Ada package definitions for APIs written in Ada
• Ada bindings for selected APIs
• API documentation in HTML format62

• API documentation in UNIX man page format
• COE development tools (see Appendix C)
• Conventions for creating APIs

The toolkit does not contain any products that require a license (compilers, editors, RDBMS, etc.). It is the
developer’s responsibility to acquire these items as needed.

Developers may install the toolkit on the disk in whatever directories are desired. The standard location for
toolkit components is:

C public header files /h/COE/include
Ada public package definitions /h/COE/include
public libraries /h/COE/lib
executables /h/TOOLS/bin
UNIX man pages /h/TOOLS/man
HTML documentation /h/TOOLS/HTML

Certain tools from Appendix C are useful for both the development environment and the runtime
environment. These tools are delivered with the operational system and are located under /h/COE/bin.

Developers should include /h/TOOLS/bin in the path environment variable for their development
environment. /h/TOOLS/man should also be included in the search path for UNIX man pages. The web
browser should be set to find HTML documentation under /h/TOOLS/HTML.

Developers are encouraged to submit tools to the COE community for inclusion in the developer’s toolkit.
All tools submitted must be license and royalty free, and must include a man page for online

62 Documentation is delivered in only one format. The goal is to use HTML for programmer documentation
because this is suitable for both NT and UNIX platforms. However, some documentation is still in UNIX
man page format.

COE Online Services

DII COE I&RTS: Rev 3.0 July 1997 13

documentation. Developers wishing to release source code for their contributed tools may do so and the
source code for the tool will be organized under the /h/TOOLS/src directory.

COE Online Services

DII COE I&RTS: Rev 3.0 July 199714

This page is intentionally blank.

10. COE Online Services

The DII COE provides a comprehensive set of services to assist in

• creating segments,
• tracking and managing submitted segments,
• tracking system trouble reports,
• distributing technical information and documents,
• communicating project-related information,
• distributing COE products to segment developers, and
• distributing COE-based systems to operational sites.

These services are provided by an SDMS and a COE Information Server (CINFO). The SDMS is an online
software repository for receiving submitted segments, and for distributing them electronically, and for
synchronizing repositories at mirror sites. The CINFO is used to disseminate project-related information
including schedules and documentation. With appropriate restrictions, SDMS and CINFO services are
available to segment developers, program managers, site administrators, services and agencies, and
program sponsors.

Several network technologies are used to implement COE online services.

World-Wide-Web (WWW) Access to catalogs, segments, plans, documents, etc. is
provided via a WWW server. It is the standard interface to
both SDMS and CINFO. Users will require a Hypertext
Markup Language (HTML) browser such as Mosaic,
Netscape, or Microsoft’s Internet Explorer to access the
WWW server.

Internet News An Internet news server is used to manage newsgroups about
the COE and COE-based systems. Such groups include
technical discussions related to COE architecture, available
tools, and standards.

anonymous ftp Anonymous ftp servers are used to provide rapid
dissemination of segments to operational sites. Sites may
receive segments in either a “push” or a “pull” mode.

COE Online Services

DII COE I&RTS: Rev 3.0 July 1997 15

electronic mail Automatic notification of key events (segment in test, segment
ready for distribution, etc.) trouble reports, and meeting
notices is done via electronic mail.

COE Online Services

DII COE I&RTS: Rev 3.0 July 199716

This approach provides several benefits to COE-based systems:

• Facilitates software and data reuse (e.g., segment reuse)

• Identifies available segments through a segment catalog

• Provides online configuration management

• Automates several aspects of the integration process

• Provides electronic notification of segment status to management

• Improves communications between segment developers

• Provides a centralized electronic distribution facility

• Separates classified or sensitive information from information suitable for general dissemination

Appendix D provides more information on how to access the COE online services described in this chapter.

Security Features

DII COE I&RTS: Rev 3.0 July 1997 17

10.1 Security Features

COE online services are separated into a classified and an unclassified system. The systems, whether
classified or unclassified, use a secure operating system, database, and network software. Auditing is
enabled to record system access and to record other security-relevant operations. Additional security
features are implemented to

• ensure software integrity,
• prevent interception or eavesdropping on data transmissions, and
• ensure separation of classified versus unclassified information, segments, and data.

The classified and unclassified components reside on physically distinct computer systems separated by an
air gap. The unclassified system is available via Internet and is generally available to any interested party.
The classified system is accessible only via SIPRNET, and only to authorized users.

Unauthorized access to the system is prevented through a layered approach. Firewalls are implemented as
the first layer of protection. Secure routers provide IP address filtering and port access to limit access only
to authorized platforms. Features are also implemented to restrict services that can be requested or granted
to further protect the system from unauthorized access.

User authentication is based on a combination of a manual registration process, an authorized IP address,
and password protection. Passwords are required to initially log onto the system, but are further required to
log into the software repository and to access browser services.

Public key encryption is used to protect segments in the software repository. Encryption and compression
are both used to protect data during transmission over the network to prevent unauthorized modifications.

Certain information, such as system problem reports or project status, is not necessarily classified.
However, such information is still sensitive and needs to be controlled. Public and private views are
implemented to provide this measure of protection.

Further discussion of security features is beyond the scope of this document.

Software Distribution Management System

DII COE I&RTS: Rev 3.0 July 199718

10.2 Software Distribution Management System

SDMS is the DII software repository, and it is used to store and disseminate COE and COE-related
products. SDMS is accessible only from SIPRNET. Segments, technical documentation, APIs, the COE
developer’s toolkit, and segment abstracts are also stored in the repository, but as appropriate, they are
mirrored on the unclassified Internet set for access by the general community.

Segments can be sent electronically to the DISA OSF through the submit program. Segments may also be
sent to the OSF via tape. Tape is necessary to accommodate large segments (such as database segments) or
classified segments. Electronically transmitted segments are compressed to reduce transmission time, and
encrypted to provide security. Online software at the OSF receives the segment and places it into a
protected directory until it is tested for conformance and to ensure that it is an authorized segment. Only
then is the segment actually checked into the SDMS. This process is described in more detail in Chapter 3.

Segments are retrieved from the SDMS in a similar way. As segments are approved for release, they are
placed in a protected directory that is accessible via an anonymous ftp, or through a network browser.

Developers who desire SDMS access must request access from DISA through their appropriate government
program sponsor. Those without SIPRNET access may request COE products, such as the developer’s
toolkit, on tape media.

Distribution of COE-based systems to operational sites also uses the SDMS. Site administrators must
request access from DISA through their appropriate government channels.

COE Information Server

DII COE I&RTS: Rev 3.0 July 1997 19

10.3 COE Information Server

The COE information server is used to disseminate information to the at-large COE community. The
information server provides the following types of information:

• general product information
• meeting minutes
• briefings
• segment descriptions
• user documentation
• programmatic documentation
• problem reports.

An unclassified WWW home page available via the Internet provides access only to non-sensitive general
information from these categories. The classified WWW home page is available only on SIPRNET and
includes a list of all available segments, segment version and patch information, information on upcoming
system changes, and special installation instructions.

All information posted on the information server requires prior approval by the DISA Engineering Office.
Information to be posted must be submitted to the engineering office by the appropriate service/agency
representative.

FOREWORD

DII COE I&RTS: Rev 3.0 July 1997 t

10.4 Mirror Sites

Project managers for COE-based systems will often have their own SSA and procedures for configuration
management, development, and project communication. Services and government agencies may wish to
implement the COE online services at their own selected sites to more directly support their program. Such
SSA sites are called mirror sites. A mirror site contains a copy of the SDMS that is updated on a periodic
basis (e.g., daily, weekly).

Mirror sites have all of the same capabilities as the central DISA site, subject to three restrictions:

1. Mirror sites are not allowed to submit COE-component segments to a mirror site SDMS. This ensures
centralized configuration management of the COE through the DII COE SSA.

2. Mission-area segments that are part of a COE-based system being developed in cooperation with DISA

(e.g., GCCS, GCSS) may be provisionally submitted to a mirror site SDMS.

3. Segments with APIs for which a mirror site is responsible may be provisionally submitted to the mirror

site SDMS.

Submission of COE-component segments or mission-application segments for DISA COE-based systems is
considered provisional until formally accepted by the DII COE SSA. These restrictions are required in
order to avoid configuration management problems.

